Prospects for multi-messenger detections of BNS mergers in O4

Barbara Patricelli^{1,2,3}

¹ Physics Department - University of Pisa ² INFN - Sezione di Pisa

³INAF - OAR

Seventeenth Marcel Grossmann Meeting July 7-12, 2024 Pescara, Italy

in collaboration with: M.G. Bernardini, M. Mapelli, P. D'Avanzo, F. Santoliquido, G. Cella, M. Razzano, E. Cuoco,

Patricelli et al. 2022, MNRAS, 513, 4159 (arXiv:2204.12504)

Sac

Introduction

- Joint observation of GW170817 and GRB 170817A during the second LIGO-Virgo-KAGRA (LVK) observing run:
 - BNS mergers are progenitors of at least a fraction of short GRBs (Abbott et al. 2017)
 - some basic properties of short GRB jets were inferred (see, e.g., Ghirlanda et al. 2019)
- Another BNS detected during the third LVK observing run (GW190425), but no EM counterpart has been found (Abbott et al. 2020)
- The fourth LIGO-Virgo-KAGRA (O4) is currently ongoing
- \sim 11 months of data taking so far; O4 will run until June 9, 2025

How many GW and multi-messenger detection of BNS mergers do we expect in O4?

The BNS population The GW simulations The EM simulations

The BNS population

We generated a sample of synthetic BNSs populating the local Universe up to z=0.11

- MOBSE population-synthesis code (Mapelli et al. 2017, Giacobbo et al. 2018)
- 3 sets of simulations corresponding to 3 different choices of the common-envelope parameter $\alpha = 1$, 3 and 7 (model A1, A3 and A7)
 - ⇒ Catalogs of BNS masses and delay times
- These quantities were fed to the code COSMORATE (Santoliquido et al. 2021)
 - \Rightarrow Catalogs of BNS systems merging within an Hubble time, with their redshift

We gave these BNS systems:

- Isotropic and homogeneous distribution in space
- Random inclination of the orbital plane with respect to the line of sight (θ_j)

The BNS population The GW simulations The EM simulations

The GW simulations

- GW signal: TaylorT4 waveforms
- Gaussian and stationary noise
- GW network: Advanced LIGO (aLIGO), Advanced Virgo (AdV) and KAGRA
- Sensitivity curves from https://dcc.ligo.org/LIGO-T2000012/public; BNS range: 190 Mpc (aLIGO); 120 Mpc (AdV); 80 Mpc (KAGRA)
- GW detection two scenarios:

- Independent interferometer duty cycle: 70 %
- GW sky localization with BAYESTAR

Matched filter pipeline and sky localization: ligo.skymap package https://lscsoft.docs.ligo.org/ligo.skymap/

The BNS population The GW simulations The EM simulations

The short GRB emission

• We assumed that all BNS mergers are associated with a short GRB (S-GRB)

- We considered both the GRB prompt emission and afterglow emission
- We considered two cases:
 - uniform jet;
 - structured jet

Image from Abbott et al. 2017, ApJL, 848, 13

• We considered different EM facilities: Swift, SVOM, INTEGRAL and Fermi

The BNS population The GW simulations The EM simulations

The GRB prompt emission

- Uniform jet with $\theta_c = 5^{\circ}$, 10°
 - ♦ On-axis S-GRBs ($\theta_j < \theta_c$);
 - \diamond The S-GRB prompt emission is described by: E_{pk}, L_{iso}, θ_j , z:
 - E_{pk} from a broken power law distribution (model "a", Ghirlanda et al. 2016);
 - L_{iso} assuming E_{pk} - L_{iso} (Yonetoku) correlation;
 - θ_j and z same as BNS merger.
 - ♦ Spectrum: Band function S(E_{pk}, α , β) with α =-0.6, β =-2.5, normalised to L_{iso}
 - $\diamond\,$ The photon peak flux (P_{\rm pk}) is calculated in the characteristic energy band for different instruments
 - $\diamond~{\sf P}_{\rm pk}$ is then compared with the detector sensitivity

• Structured jet with $\theta_c=5^\circ$ and a power-law/gaussian angular distribution of the radiated luminosity and the Lorentz factor

- \diamond On-axis plus moderately off-axis (5° < θ_j < 35°) S-GRBs
- ♦ Same procedure as for GRBs with uniform jet, but using the L_{iso}(θ_j) and E_{pk}(θ_j) as seen by an observer at θ_j

The BNS population The GW simulations The EM simulations

The GRB X-ray afterglow emission

- Observational strategy put in place by Swift/XRT during O3 as a reference (Evans et al. 2016)
- Sample of on-axis S-GRBs presented in D'Avanzo et al. 2014 as a reference
 - For each S-GRB we estimated the X-ray luminosity
 - We compared the X-ray light curves with the limiting luminosity that can be reached by Swift/XRT at different distances

• We convolved the rates of the observable BNS mergers with the probability that the X-ray luminosity is above the *Swift*/XRT flux limit

Introduction Multi-messenger simulations Results

GWs + GRB (prompt) GWs + GRB (afterglow

Conclusions

Results - I

GWs + GRB (prompt emission), case a

model	$\mathcal{R}(0)$	GW	GW+EM (prompt)								
			Swift/BAT		Fermi/GBM		INTEGRAL/IBIS		SVOM/ECLAIRs		
			uniform	structured	uniform	structured	uniform	structured	uniform	structured	
	Gpc ⁻³ yr ⁻¹										
A1	31	1	0.0006 (0.0023)	0.014-0.020	0.003 (0.013)	0.070-0.11	0.0001 (0.0004)	0.0024-0.0035	0.0005 (0.0019)	0.013-0.017	
A3	258	5	0.003 (0.01)	0.07-0.10	0.017 (0.068)	0.35-0.54	0.0005 (0.002)	0.01-0.02	0.002 (0.01)	0.06-0.08	
A7	765	13	0.008 (0.031)	0.18-0.26	0.045 (0.18)	0.91-1.42	0.001 (0.005)	0.031-0.046	0.006 (0.025)	0.17-0.22	

GWs + GRB (prompt emission), case b

model	$\mathcal{R}(0)$	GW	GW+EM (prompt)								
	1		Swift/BAT		Fermi/GBM		INTEGRAL/IBIS		SVOM/ECLAIRs		
1			uniform structured		uniform	structured	uniform	uniform structured	uniform	structured	
/	Gpc ⁻³ yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	yr ⁻¹	
A1	31	5	0.002 (0.01)	0.05-0.08	0.014 (0.06)	0.27-0.46	0.0005 (0.002)	0.009-0.014	0.002 (0.008)	0.05-0.07	
A3	258	22	0.01 (0.04)	0.24-0.37	0.06 (0.26)	1.17-2.00	0.002 (0.008)	0.04-0.06	0.009 (0.04)	0.22-0.32	
A7	765	61	0.03 (0.12)	0.67-1.05	0.18 (0.74)	3.28-5.65	0.006 (0.02)	0.11-0.18	0.02 (0.10)	0.63-0.90	

- GW detection rate between 1 and 13 (5 and 61) yr^{-1} for case a (case b)
- Maximum joint GW+EM detection rate with Fermi/GBM, structured jet
- Swift/BAT and SVOM/ECLAIRs have similar performances: working together they will almost double the possibilities to catch the S-GRB prompt emission

Introduction Multi-messenger simulations Results

GWs + GRB (prompt) GWs + GRB (afterglow

Results - II

GWs + GRB (X-ray afterglow emission, $\theta_j < 5^\circ$)

	Model		case a		1.1.1.1.1.1.2	case b	
1-1-1-	//	< 100 Mpc	100-200 Mpc	200-500 Mpc	< 100 Mpc	100-200 Mpc	200-500 Mpc
17/		yr ⁻¹					
the former of the second	< A1 /	0.0015-0.0026	0.0007-0.0014	0.0002-0.0006	0.005-0.008	0.002-0.004	0.0007-0.0024
1 st day, 60 s	A3	0.007-0.012	0.003-0.007	0.001-0.003	0.019-0.032	0.010-0.019	0.004-0.013
	A7	0.021-0.035	0.009-0.017	0.002-0.006	0.098-0.059	0.025-0.050	0.008-0.028
	A1	0.0014-0.0017	0.0006-0.0009	0.0002-0.0003	0.004-0.005	0.0018-0.0025	0.0006-0.0012
1 st -3 rd day, 500 s	A3	0.007-0.010	0.003-0.004	0.0008-0.002	0.018-0.021	0.009-0.011	0.003-0.006
a la faire	A7	0.019-0.023	0.008-0.010	0.001-0.003	0.054-0.064	0.022-0.030	0.007-0.014

- The rates of joint GW and GRB afterglow detections are << 1 yr $^{-1}$
- If we consider BNS mergers with $\theta_j < 10^\circ$, the rates rise up to a factor \sim 4, but they remain very low
- Under the assumption of a structured jet, the discovery of X-ray counterparts of BNS mergers with $\theta_j > 10^\circ$ is highly unlikely

Conclusions

 Depending on the population model considered and on the assumed GW SNR thresholds, the expected number* of BNS merger detections is between 1 and 61 per year

 \rightarrow Comparison with O4 observations would allow us to put constraints on population synthesis models

- Expected rate* of multimessenger detections higher when considering Fermi/GBM → Fermi/GBM represents a very efficient detector of counterparts to GWs
- Probability to detect an X-ray counterpart is very low, mainly because only on-axis sources can be detected
- SVOM could play an important role for the discovery of S-GRB associated with BNS mergers

*NB: rates have been obtained assuming GW detector sensitivities higher than the current ones

Backup

Backup slides

11 / 13

Results - gaussian jet

Model	GW+EM (prompt)									
	Swift/BAT		Fermi/GBM		INTEGRAL/IBIS		SVOM/ECLAIRs			
	case a	case b	case a	case b	case a	case b	case a	case b		
	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}		
A1	0.015	0.06	0.073	0.28	0.0025	0.01	0.013	0.05		
A3	0.017	0.25	0.37	1.24	0.010	0.04	0.07	0.24		
A7	0.19	0.71	0.96	3.44	0.032	0.12	0.17	0.66		

Results - afterglow

X-ray afterglow emission

 ~ 60 % (50 %; 30 %) of on-axis S-GRBs at 100 Mpc (200 Mpc; 500 Mpc) would be detectable by Swift/XRT 1 day after the merger, with an exposure of 60 s

 ~ 55 % (45 %; 25 %) of on-axis S-GRBs at 100 Mpc (200 Mpc; 500 Mpc) would be detectable by Swift/XRT 3 days after the merger, with an exposure of 500 s