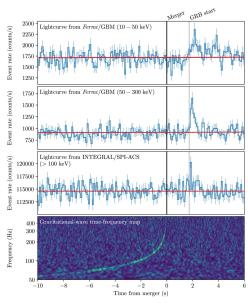
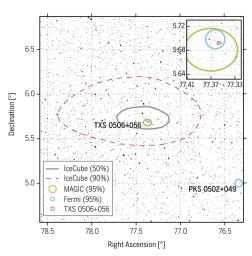


The SVOM Mission: Perspectives for Multi-Messenger Astronomy


Rachel Hamburg (CNRS/ICJLab)

Multi-Messenger Astronomy

the observation of an astrophysical phenomenon in more than one cosmic "messenger"

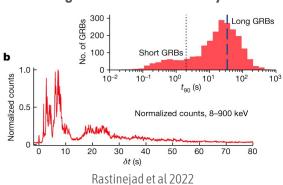

SN 1987A + accretion ■ Baksan accretion disk? t [sec] NASA Hubble | Bar et al 2020

GW170817 / GRB 170817A

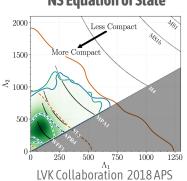
Abbott et al 2017, ApJ 848 L13

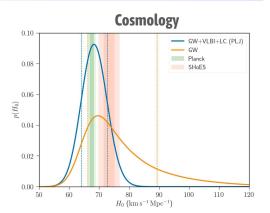
TXS 0506+056 / IceCube 170922A

Aartsen et al 2018, Science, 361, 3698


...with Light and Gravitational Waves

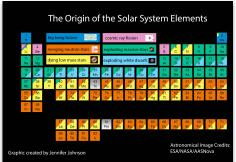
Compact Object Evolution



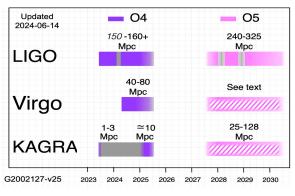

NASA/Goddard

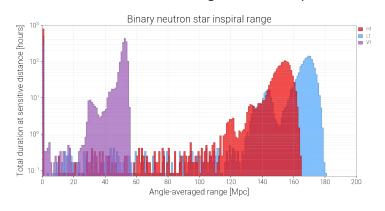
Merger Remnant and GRBs Physics

NS Equation of State

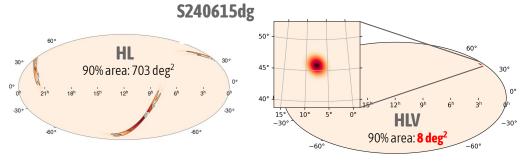


Hotokezaka et al 2019


Heavy Element Production

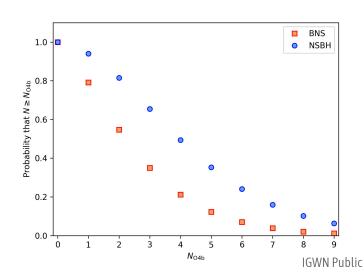

LIGO/Virgo/Kagra O4 Run

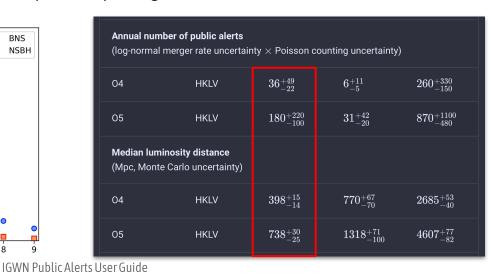
Extended to 9th June 2025!



IGWN Public Alerts User Guide

Current LIGO BNS range: 140-180 Mpc



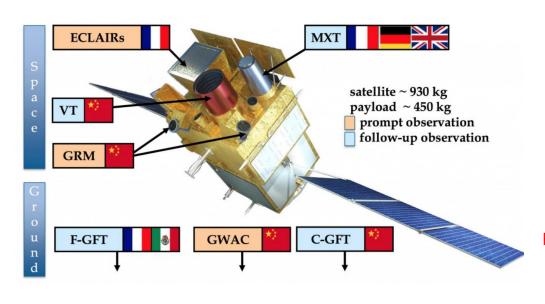

Virgo used in parameter estimation, notably reducing localizations

Expected GW Rates

- 04b:
 - o 1 significant NS merger (GW230529) but no detected EM emission
 - o 79% probability for at least 1 significant BNS merger
- **05**: possible increase by factor of 10 in BNS public reporting rate

BNS

The SVOM Mission


Prompt

ECLAIRs

Coded-mask imager
4-120 keV
~12 arcmin localization
Full photon data

GRM

3 scintillation detectors 15 keV-5 MeV ~10 deg localization ~20 microsec resolution

Follow-Up

MXT

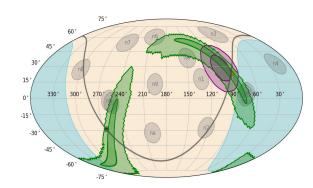
Lobster-eye optics
0.2-10 keV
<1 arcmin localization

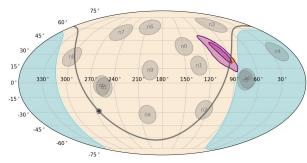
VT

40-cm mirror
Red filter (650-1000 nm)
~arcsec localization
23 mag (300 s)

Prompt GRB Detection

1. Ideal Scenario: If ECLAIRs promptly detects GRB, then spacecraft can automatically slew to best location


- GRB notices automatically sent to GCN less than 30 s
- MXT and VT counterpart detection minutes
- Scientific products will be publicly accessible minutes

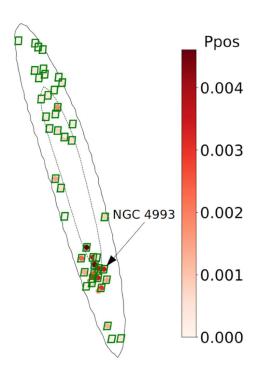

2. RAVEN: LVK receives SVOM notice and publishes **Potential Coincidence** alert to GCN (if passes reporting threshold)

Joint FAR and combined Healpix skymap (Ashton et al 2018)

Coincidence FAR:
$$FAR_c = FAR_{gw} rac{R_{ext} \Delta t}{I_{\Omega}}$$
 x trials factor

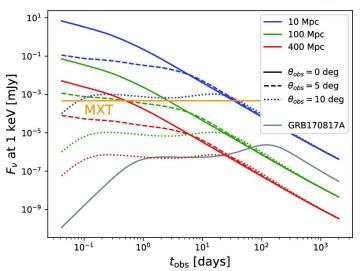
S230619bd (GCN 34054)

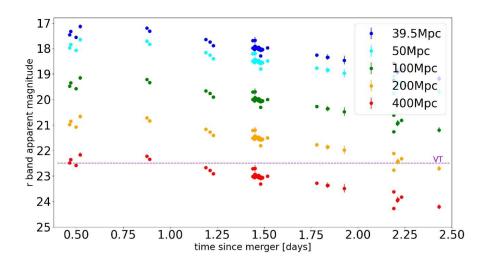
ECLAIRs Ground Searches (in development)


Full photon data (X-Band) available to perform sensitive searches for gamma-ray transients

- Online search for count rate excesses below on-board triggering threshold (S. Schanne)
- SNR search of image data triggered by external alerts (M. Llamas Lanza)
- Counts-based search triggered by external alerts (R. Hamburg)
- Blind, wavelet algorithm (S. Mate, N. Dagoneau)
- ML-based anomaly detection algorithm (B. Arcier)

GW Follow-up with MXT and VT


Likely scenario: receive GW alert and SVOM pipeline composes **galaxy tiling** strategy (Ducoin et al 2020, 2023)


- 1. Built off gwemopt (Coughlin et al 2019)
- 2. Select galaxies from MANGROVE catalog (up to 400 Mpc)
 - 90% GW localization probability
 - \circ 3 σ GW distance posterior
- 3. Weight tile probability by stellar mass
- 4. Apply observing constraints
 - Anti-solar pointing (<90 deg)
 - Minimize slews > 5 deg
- 5. Optimization
 - Reduce tile overlap
 - 1+ galaxy in VT FOV

GRB 170817A-like GRBs

- MXT sensitive to nearby, on-axis afterglow at early times from weak GRBs (Pellouin & Daigne 2024, in press)
- VT can catch early kilonova emission out to ~400 Mpc

Ducoin et al 2023

ToO Program

15% nominal (40% extended) mission dedicated to unplanned observations

ToO Nominal

Standard GRB follow-up or source observation

- Rate: 1 / day
- Time: 1 orbit (~45 min)
- Latency: 24-48 hr

ToO MM

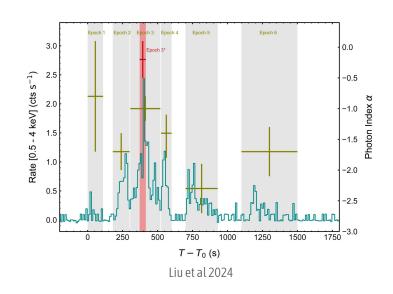
GW or neutrino follow-up

- Rate: 1 / week
- Time: 1-14 orbits (24 hr max)
- Latency: 12 hr (S-band) / 4 hr (Beidou)

ToO Exceptional

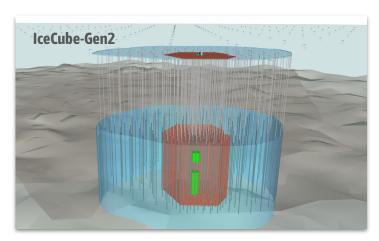
Special GRB, GW, neutrino follow-up

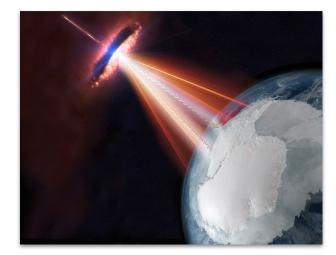
- Rate: 1 / month
- Time: 7-14 orbits (24hr max)
- Latency: 12 hr (S-band) / 4 hr (Beidou)


ToO submission will be open to all and science products will be delivered to community as soon as possible

Synergy with Einstein Probe

Can coordinate observations for faster tiling of GW localization skymap

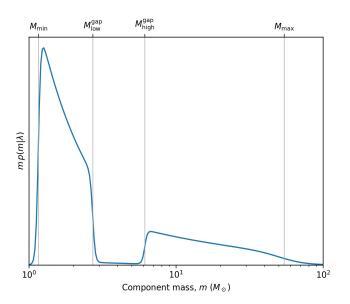

- EP already detecting GRBs and X-ray transients (e.g., EP 240315A, z = 4.859, GCN)
- SVOM and EP share data centers, Co-Is, and can provide multi-band coverage

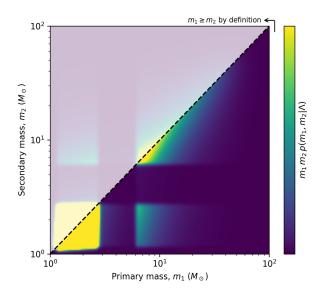


Neutrino Follow-Up

- Observations in the keV band can be important for multi-messenger studies of blazars (Keivani et al 2018)
- SVOM pipeline being built for automatic follow-up of neutrino alerts from IceCube, SNEWS, and (upcoming)
 KM3NeT

Credit: IceCube Collaboration

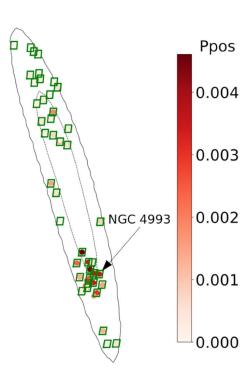

Conclusions


- SVOM will be a powerful instrument for multi-messenger astronomy in the coming years!
- With O4 extension, still looking forward to GW/EM detection!
- Combined efforts with Einstein Probe could reduce GW localization tiling time
- Look out for more SVOM GRBs!

Back-Up

O5 Expected Detection Rates

- O3 global fit to mass distribution
- High end of BNS range for all detectors except Virgo
- 70% duty cycle for each detector


GW Follow-up with MXT and VT

Likely scenario: receive GW alert and SVOM pipeline composes **galaxy tiling** strategy (Ducoin et al 2020, 2023)

- 1. Built off gwemopt (Coughlin et al 2019)
- 2. Select galaxies from MANGROVE catalog (up to 400 Mpc)
 - 90% GW localization probability
 - \circ 3 σ GW distance posterior
- 3. Weight tile probability by stellar mass
- 4. Apply observing constraints
 - Anti-solar pointing (<90 deg)
 - Minimize slews > 5 deg
- 5. Optimization
 - Reduce tile overlap
 - 1+ galaxy in VT FOV

$$P_{
m pos} = P_{dV} = rac{P_{
m pixel}}{
m Pixel~area}~N_{
m pixel}\,{
m e}^{-rac{1}{2}\left(rac{D_{
m galaxy}-\mu_{
m pixel}}{\sigma_{
m pixel}}
ight)^2}$$

$$G_{
m mass} = rac{M_{
m *,galaxy}}{\sum M_{
m *,galaxy}}$$

