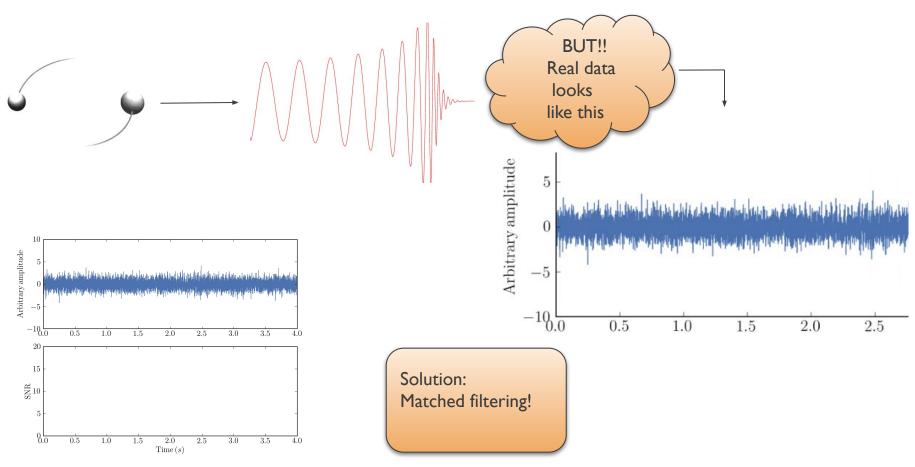
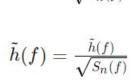
How are the LVK gravitational wave searches doing, and where are they headed?


CONTENTS

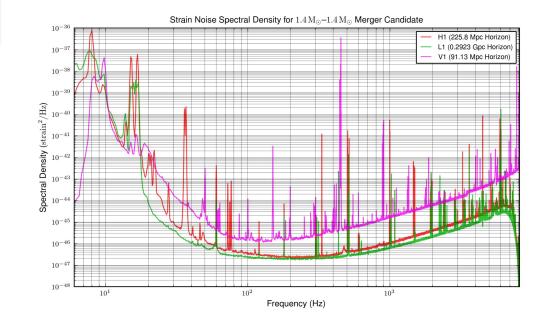
I. How do searches for compact binaries work?

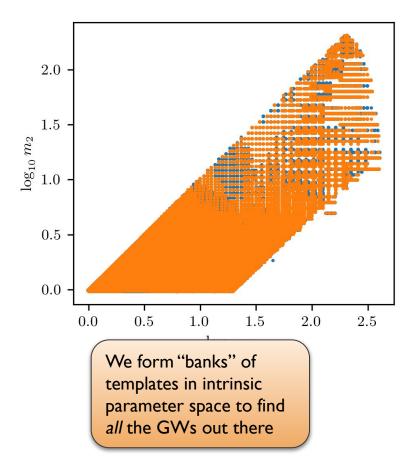
- 2. Searches running during O4
- 3. O4 results
- 4. Future Directions

How do searches for compact binaries work?



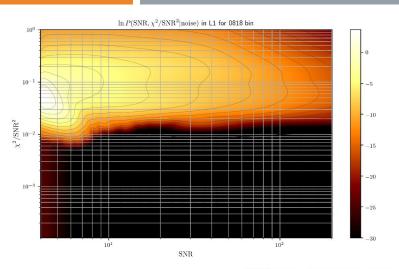
Credit: Ryan Magee

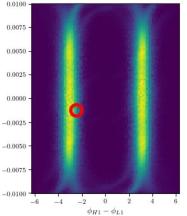

 $SNR = \langle \tilde{d} \, | \, \tilde{h} \rangle$


 $ilde{d}(f) = rac{ ilde{d}(f)}{\sqrt{S_n(f)}}$.

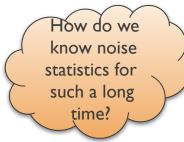
The PSD (S_n(f)) is used to remove frequency correlations in a process called whitening

SNR is the inner product of (whitened) data and (whitened) template



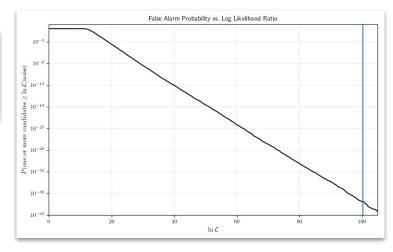

Second solution: create a better statistic than SNR to rank candidates

- This ranking statistic should consider things like background statistics, expected signal distributions, etc
- A common quantity used as an input to this ranking statistic is a χ^2 statistic to evaluate signal consistency across time/frequency
- The ranking statistic should consider the likelihood of relative arrival times (dt) and phases(dφ) of the GW at different detectors


An example background collected by a GstLAL analysis (top) and an example calculated dt-d ϕ (right)

 $t_{H1} - t_{L1}$

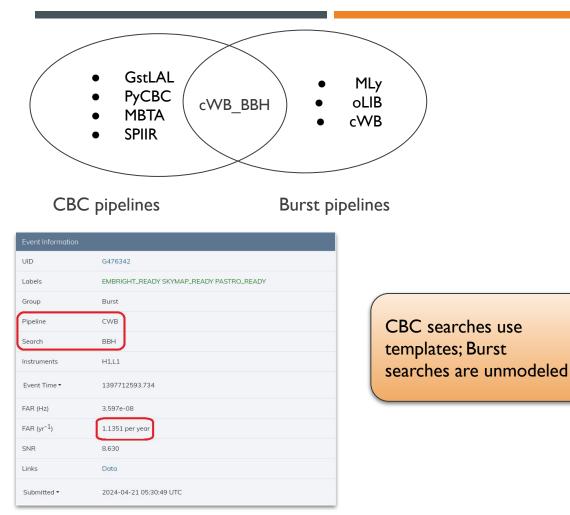
The False Alarm Rate (FAR) of a candidate describes how frequently such a candidate will be produced from noise


P(astro) considers the FAR and a prior astrophysical distribution to evaluate the probability of astrophysical origin

Event Information	
UID	G495305
Labels	PASTRO_READY EMBRIGHT_READY SKYMAP_READY
Group	свс
Pipeline	мвта
Search	AllSky
Instruments	H1,L1,V1
Event Time -	1403034677,425
FAR (Hz)	4.004e-20
FAR (yr ⁻¹)	1 per 7.9146e+11 years
SNR	27.837
Links	Data
Submitted 🕶	2024-06-21 19:51:20 UTC

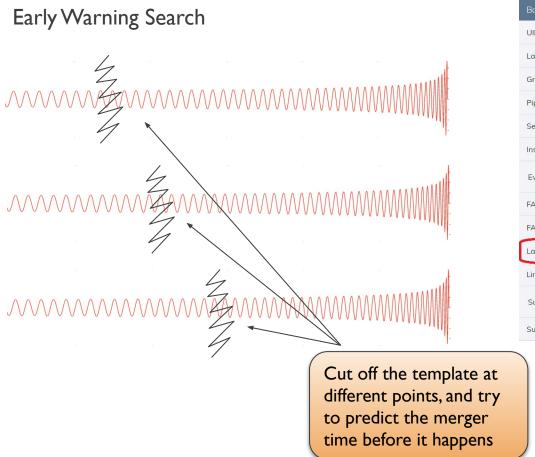
Solution: Create new "fake" noise triggers from existing noise triggers

Common methods:


Time slidesSampling from the noise background

Evaluating the FAR of a candidate with ranking statistic 100

Searches running during O4

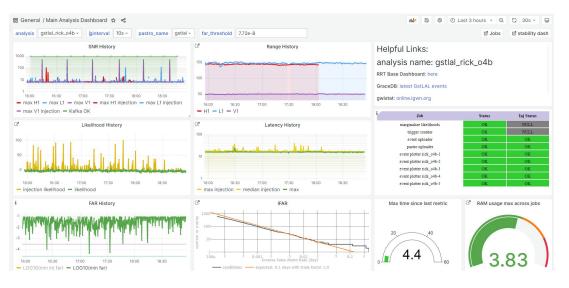


Online searches:

- AllSky
- Early Warning
- Sub-Solar Mass

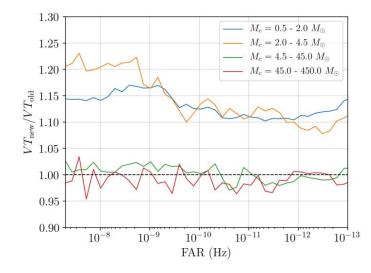
Offline searches:

- AllSky
- Sub-Solar Mass
- Intermediate-mass Black Hole


Basic Event Information		
UID	G710163	
Labels	EMBRIGHT_READY SKYMAP_READY	
Group	CBC	
Pipeline	gstial	
Search	EarlyWarning	
Instruments	H1,L1,V1	
Event Time •	1347725130.154	
FAR (Hz)	2.724e-04	
FAR (yr ⁻¹)	8596.7 per year	
Latency (s)	-57.770	
Links	Data	
Submitted 🕶	2022-09-20 16:04:14 UTC	
Superevent	S220920agw	

Only searches the low mass (BNS) space Crucial for multi-messenger astronomy

Improvements in O4: monitoring



Traditional way of running an online search (top) vs the modern way (bottom)

Improvements in O4: sensitivity and reliability

VT, the sensitive volume-time is a measure of the sensitivity of a pipeline

O4 Results

	O3	O4a	O4b
Detections (FAR < 1/month)		81	31
Retractions	23	8	5
Duration (months)	11	8	3*

*still in progress

A retraction is a GW candidate that we sent out an alert for, but later on lost confidence in Due to multiple pipelines running, we have a trials factor on what qualifies far a public alert

Trials factors for O4b:

- AllSky: 5
- Early Warning: 3
- Sub-Solar Mass: No alerts
- Burst: 4

	BBH	NSBH	BNS	Noise
Number	78	1	0	2

Source classifications for public alerts in O4

	BBH	NSBH	BNS	Noise
Number	28	1	0	2

O4a

O4b

Interesting candidates: GW230529

Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M_{\odot} Compact Object and a Neutron Star

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

ABSTRACT

We report the observation of a coalescing compact binary with component masses 2.5–4.5 M_{\odot} and 1.2–2.0 M_{\odot} (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M_{\odot} at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 55^{+127}_{-47} Gpc⁻³ yr⁻¹ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.

https://arxiv.org/abs/2404.04248

- Probable NSBH during O4a
- Single detector candidate
- Provides support for objects in the lower mass gap
- Has implications for merger rates

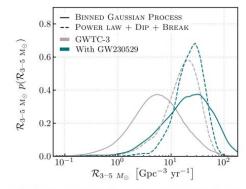
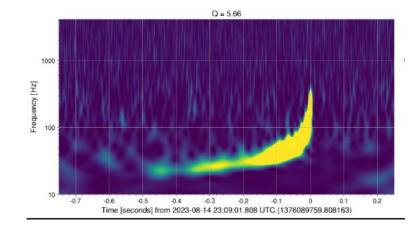
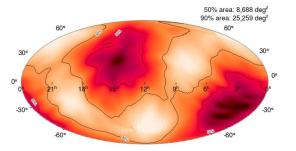
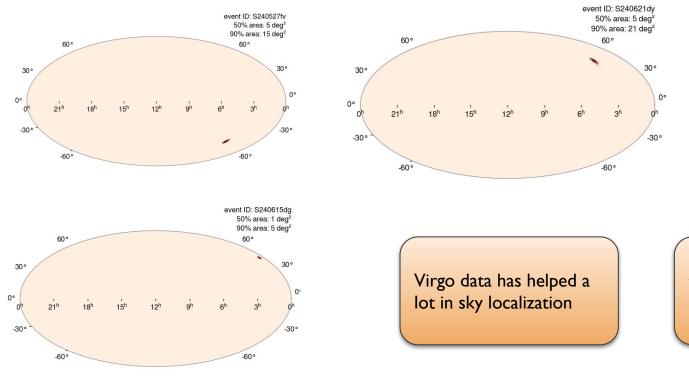




Figure 5. Posterior on the merger rate of binaries with one or both components between $3-5 M_{\odot}$. The solid curves show the results from the BINNED GAUSSIAN PROCESS analysis and the dashed curves show the results from the POWER LAW + DIP + BREAK analysis. Both models analyze the full black hole and neutron star mass distribution. The teal and grey curves show the analysis results with and without GW230529, respectively.

Interesting candidates: S230814ah


Single Inspiral Table	
IFO	
Channel	GDS-CALIB_STRAIN_CLEAN
End Time (GPS)	1376089759.810 s
Template Duration	17.0 s
Effective Distance	
Coa. Phase	0.68369401 rad
Mass 1	42.603889 M _O
Mass 2	24.745056 M _O
η	0.23242138
F Final	1024.0 Hz
SNR	42.375404
x ²	0.99601358
χ ² DOF	1
spin1z	0.01546875
spin2z	0.01546875

Unfortunately, only LI was observing

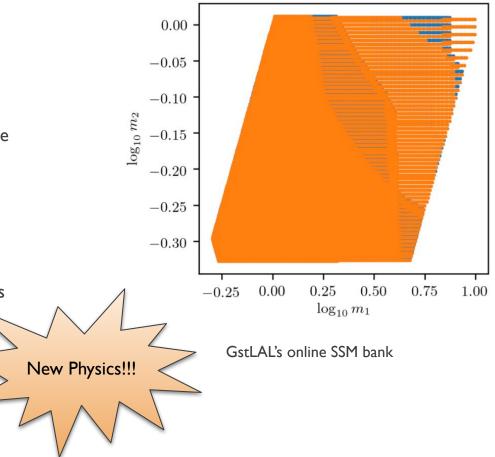
Interesting candidates: S240527fv, S240615dg, S240621dy

New SNR Optimization techniques also help make skymaps more accurate

Future Directions

- Searches keep getting more robust, more flexible, and more efficient
- We are now more prepared than ever to participate in the next multi-messenger event
- Making a burst detection would be huge
- Precession and higher order modes are the next frontier to conquer for searches

Gravitational-wave template banks for novel compact binaries


Stefano Schmidt [●],^{1,2,*} Bhooshan Gadre [●],² and Sarah Caudill ^{●3,4}
¹Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
²Institute for Gravitational and Subatomic Physics (GRASP),
Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
³Department of Physics, University of Massachusetts, Dartmouth, MA 02747, USA
⁴Center for Scientific Computing and Visualization Research,
University of Massachusetts, Dartmouth, MA 02747, USA

We introduce a novel method to generate a bank of gravitational-waveform templates of binary black hole (BBH) mergers for matched-filter searches in LIGO, Virgo and Kagra data. We derive a novel expression for the metric approximation to the distance between templates, which is suitable for precessing BBHs and/or systems with higher-order modes (HM) imprints and we use it to meaningfully define a template probability density across the parameter space. We employ a masked autoregressive normalizing flow model which can be conveniently trained to quickly reproduce the target probability distribution and sample templates from it. Thanks to the normalizing flow, our code takes a few *hours* to produce random template banks with millions of templates, making it particularly suitable for high-dimensional spaces, such as those associated to precession, eccentricity and/or HM. After validating the performance of our method, we generate a bank for precessing black holes and a bank for aligned-spin binaries with HMs: with only 5% of the injections with fitting factor below the target of 0.97, we show that both banks cover satisfactorily the space. Our publicly released code mbank will enable searches of high-dimensional regions of BBH signal space, hitherto unfeasible due to the prohibitive cost of bank generation.

https://arxiv.org/pdf/2302.00436

Sub-Solar Mass Search

- Searches for compact binaries with at least one component below I solar mass
- A very computationally expensive search, in terms of both number of templates and calculations per template
- Pipelines are running online searches as well as more comprehensive offline searches

THANK YOU!