Does no-hair theorem fail in the modified theories of gravity?

Semin Xavier
Department of physics, IIT Bombay

Alan Sunny, ${ }^{\text {collaboration with }}$ Shankaranarayanan Class.Quant.Grav. 41 (2024) 13, 135002(arXiv:2303.04684)

Seventeenth Marcel Grossmann Meeting
(Talk in the parallel session)

12 July 2024

Modified theories of gravity vs GR

- Vacuum GR

$$
\mathcal{L}_{E H}=R
$$

- Spherically symmetry
- Birkhoff's theorem;
e.g. Schwarzschild black hole
- Axial symmetry;
- No-hair theorem;
e.g. Kerr black hole
- Modified action

$$
\mathcal{L}_{M G}=R+\alpha R^{2}+\beta R_{\mu \nu} R^{\mu \nu}+\gamma R_{\mu \nu \sigma \lambda} R^{\mu \nu \sigma \lambda}
$$

- E.O.M are complex
- Birkhoff's theorem
- Particular $f(R)$ [SX et al.,CQG-225006]

Schwarzschild black hole

- No-hair theorem....?

$$
\left.R_{\mu \nu \sigma \lambda} R^{\mu \nu \sigma \lambda}\right|_{r_{H}=2 G M}=\frac{12}{r_{H}^{4}}
$$

$f(R)$ model and solution

Modified Einstein-Hilbert action:

$$
\begin{equation*}
S=\frac{1}{16 \Pi G} \int d^{4} x \sqrt{-g} f(R) \quad f(R)=\left(\alpha_{0}+\alpha_{1} R\right)^{p} \quad \alpha_{0}, \alpha_{1}>0 \quad p>1 \tag{1}
\end{equation*}
$$

- Case $p=2$
- Line-element up to $\mathcal{O}\left(\chi^{2}\right)(\chi=a / m$, spin parameter $)$

$$
\begin{aligned}
d s^{2} & =-e^{\mu(\rho)}\left[U(\rho)+\chi^{2} V(\rho) \cos ^{2} \theta\right] d \tau^{2}+\frac{1}{U(\rho)}\left[1-\chi^{2}\left(\frac{V(\rho)}{U(\rho)}+\frac{\sin ^{2} \theta}{\rho^{2}}\right)\right] d \rho^{2} \\
& -2 \chi V(\rho) \rho^{2} \sin ^{2} \theta d \tau d \phi+\left[\rho^{2}+\chi^{2} \cos ^{2} \theta\right] d \theta^{2}+\rho^{2} \sin ^{2} \theta\left[1+\frac{\chi^{2}}{\rho^{2}}+\chi^{2} V(\rho) \sin ^{2} \theta\right] d \phi^{2}
\end{aligned}
$$

$$
g_{\phi \phi}>0 \Longrightarrow V(\rho)>0 . \tau=t / M, \rho=r / M
$$

Slowly rotating Kerr metric

The slowly rotating approximation upto quadratic order of χ;

$$
\begin{align*}
d s^{2} & \approx-\left(1-\frac{2}{\rho}+\frac{2 \chi^{2} \cos ^{2} \theta}{\rho^{3}}\right) d \tau^{2}-\frac{4 \chi \sin ^{2} \theta}{\rho} d \tau d \phi \\
& +\left[\frac{1}{1-\frac{2}{\rho}}-\frac{\chi^{2}}{\rho^{2}\left(1-\frac{2}{\rho}\right)^{2}}\left(1-\left[1-\frac{2}{\rho}\right] \cos ^{2} \theta\right)\right] d \rho^{2}+\left(\rho^{2}+\chi^{2} \cos ^{2} \theta\right) d \theta^{2} \\
& +\left[\rho^{2}+\chi^{2}\left(1+\frac{2}{\rho} \sin ^{2} \theta\right)\right] \sin ^{2} \theta d \phi^{2} \tag{3}
\end{align*}
$$

Slowly-rotating black hole solution (SRBH) in $f(R)$

Vacuum $f(R)$ field equations

$$
\begin{equation*}
f^{\prime}(R) R_{\mu \nu}-\frac{1}{2} f(R) g_{\mu \nu}-\nabla_{\mu} \nabla_{\nu} f^{\prime}(R)+g_{\mu \nu} \square f^{\prime}(R)=0 \tag{4}
\end{equation*}
$$

Simplifying field equations;

$$
\begin{equation*}
\frac{W_{0}(\rho)}{4 \alpha_{1}^{2} \rho^{5} U(\rho)[\Phi(\rho)-2]^{2}[\Phi(\rho)+4]^{2}} \chi^{2}+\frac{W_{1}(\rho) W_{2}(\rho)}{2 \alpha_{1}^{2} \rho^{3} U(\rho)[\Phi(\rho)-2][\Phi(\rho)+4]}=0 \tag{5}
\end{equation*}
$$

where, $\Phi(\rho)=\rho\left[\mu^{\prime}(\rho)+[\ln U(\rho)]^{\prime}\right]$.

- $W_{1}(\rho)=\mathcal{O}[U(\rho), \mu(\rho)]$ and $W_{2}(\rho)=\mathcal{O}[U(\rho), \mu(\rho)]$
- $W_{0}(\rho)=\mathcal{O}[U(\rho), \mu(\rho), V(\rho)]$
- Evaluate $U(\rho)$ and $\mu(\rho)$ by solving $W_{1}(\rho)=0$ or $W_{2}(\rho)=0$ without the knowledge of $V(\rho)$

Slowly-rotating black hole solutions (SRBH) in $f(R)$

- The solutions are $\left(W_{2}(\rho)=0\right)$;

$$
\begin{align*}
U(\rho) & =1-\frac{C_{1}}{\rho}+\frac{C_{0}}{\rho^{2}}+\frac{\rho^{2}}{12 \kappa^{2}}, \quad C_{0}=0, \quad \kappa=\alpha_{0} / \alpha_{1} \tag{6}\\
\frac{\mu(\rho)}{2} & =\ln \left[1+N_{1}\left(\int \rho^{-1 / 2}\left(\rho^{3}+12 \rho \kappa^{2}-12 C_{1} \kappa^{2}\right)^{-3 / 2} d \rho\right)\right], \quad N_{1}<0 \tag{7}\\
V(\rho) & =\sum_{j=0}^{\infty} \frac{C_{j+2}}{\rho^{j+2}} \tag{8}
\end{align*}
$$

where C_{1}, C_{0}, N_{1} and C_{j+2} are integration constants.

- Multiple slowly-rotating black hole solutions (SRBH) for vacuum

Comparing asymptotically non-flat SRBH in GR

Asymptotically non-flat in GR

- $U(\rho)=1-\frac{C_{1}}{\rho}+\frac{\rho^{2}}{12 \kappa^{2}}$

$$
\begin{aligned}
\mu(\rho) & =0 \\
V(\rho) & =\frac{\tilde{C}}{\rho^{3}}
\end{aligned}
$$

- Unique

Infinite non-flat SRBH in modified gravity

- $W_{2}(\rho)=0$;
- $U(\rho)=1-\frac{C_{1}}{\rho}+\frac{\rho^{2}}{12 \kappa^{2}}$

$$
\begin{aligned}
\mu(\rho) & \neq 0 \\
V(\rho) & =\frac{C_{j+2}}{\rho^{j+2}} \quad j>1
\end{aligned}
$$

- Infinite choice for $U(\rho)$ and $\mu(\rho)$
- $W_{1}(\rho)=0 \ldots$?
- Arbitrary $V(\rho)$

Properties of the SRBH solution, $C_{3} \neq 0$ (Event horizon)

- Event horizon $\left(g^{\rho \rho}=0\right)$;

$$
\begin{equation*}
\rho_{H}=\frac{H^{2 / 3}\left(2 \kappa^{2}\right)^{1 / 3}-2^{5 / 3} \kappa^{4 / 3}}{H^{1 / 3}} ; H=2 \sqrt{9+4 \kappa^{2}}+6 \tag{9}
\end{equation*}
$$

- The ρ_{H} depends on κ^{2} as compared to the SR Kerr. $\kappa^{2}=0.33$, matches to GR.*

Figure 1: Plot of ρ_{H} as a function of κ^{2} for $\chi=0.1$ and $C_{3}=1$.

Properties of the SRBH solution, $C_{3} \neq 0$ (Ergosphere)

- Ergosphere $\left(g_{\tau \tau}=0\right)$:

$$
\begin{equation*}
\frac{1}{12 \kappa^{2}} \rho^{5}+\rho^{3}-2 \rho^{2}+C_{3} \chi^{2} \cos ^{2}(\theta)=0 \tag{10}
\end{equation*}
$$

The event horizon is very close to the ergosphere for SRBHs

- Red-curve \rightarrow event-horizon, two black curves \rightarrow ergosphere. Variation due to $\chi^{2} \cos \theta$ is visible in the inner part of the ergoregion

Properties of the SRBH solution, $C_{3} \neq 0$ (Effective potential)

- The effective potential $\left(V_{\text {eff }}=0=\partial_{r} V_{\text {eff }}\right) \Longrightarrow$ circular orbits in the equatorial plane. The circular orbits in the SRBH in $f(R)$ are smaller than Kerr.

Figure 2: Plot of $V_{\text {eff }}$ of a test particle in the equatorial plane for $\mu(\rho)=0$.

Discussion and Conclusions

- For a class of $f(R)$ models, we obtained asymptotically non-flat, infinite number of SRBH solutions.
- Two branches $\left(W_{1}(\rho)=0\right.$ or $\left.W_{2}(\rho)=0\right)$ of SRBH solutions and a collapse of a star might lead to a BH in either one of these branches.
- In GR, no-hair theorems concern mostly black hole solutions with flat asymptotics. Situation can be different in the case of modified theories of gravity.
- Analyzed the kinematical properties of the SRBHs.
- Interested to know whether one can obtain non-singular BH solutions from the other branch $W_{1}(\rho)=0$.

Thank You

$f(R)$ model and solution EOM by eliminating terms greater than χ^{2} :

$$
\begin{align*}
\mathcal{G}_{\tau}^{\tau} & \equiv T_{1}[U(\rho), V(\rho), \mu(\rho)] \simeq T_{1}^{(0)}(\rho)+T_{1}^{(I I)}(\rho, \theta) \chi^{2}=0 \tag{11a}\\
\mathcal{G}_{\rho}^{\rho} & \equiv T_{2}[U(\rho), V(\rho), \mu(\rho)] \simeq T_{2}^{(0)}(\rho)+T_{2}^{(I I)}(\rho, \theta) \chi^{2}=0 \tag{11b}\\
\mathcal{G}_{\theta}^{\theta} & \equiv T_{3}[U(\rho), V(\rho), \mu(\rho)] \simeq T_{3}^{(0)}(\rho)+T_{3}^{(I I)}(\rho, \theta) \chi^{2}=0 \tag{11c}\\
\mathcal{G}_{\theta}^{\rho} & \equiv T_{4}[U(\rho), V(\rho), \mu(\rho)] \simeq T_{4}^{(I I)}(\rho, \theta) \chi^{2}=0 \tag{11d}\\
\mathcal{G}_{\phi}^{\tau} & \equiv T_{5}[U(\rho), V(\rho), \mu(\rho)] \simeq T_{5}^{(I)}(\rho, \theta) \chi=0, \tag{11e}
\end{align*}
$$

Features of field equations
(1) T_{1} and T_{3} contain fourth-order derivatives of $U(\rho), \mu(\rho)$ and $V(\rho)$, while T_{2} and T_{4} contain third-order derivatives of $U(\rho), \mu(\rho)$ and $V(\rho) . T_{5}$ contains third-order derivatives of $U(\rho)$ and $\mu(\rho)$, and second-order derivative of $V(\rho)$.
(2) T_{1}, T_{2} and T_{3} do not contain terms in first-order in χ, i.e. $T_{i}^{(0)}(\rho)+T_{i}^{(I I)}(\rho) \chi^{2}+\mathcal{O}\left(\chi^{3}\right)$, where $i=1,2$ and 3 . Additionally, these three components' χ independent terms depend only on $U(\rho)$ and $\mu(\rho)$.
(3) T_{4} only contains second-order in χ, i. e. $T_{4}^{(I I)}(\rho) \chi^{2}+\mathcal{O}\left(\chi^{3}\right)$, while T_{5} only contains first-order in χ, i. e, $T_{5}^{(I I)}(\rho) \chi+\mathcal{O}\left(\chi^{3}\right)$.
(9) It is possible to express $\mathcal{G}_{\tau}^{\phi}$ and $\mathcal{G}_{\rho}^{\theta}$ in terms of $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{5}.
(0) Since the equations of motion contain fourth-order derivatives of $U(\rho), V(\rho)$, and $\mu(\rho)$, an exact solution will have four independent constants.

Slowly-rotating black hole space-time(SRBH)

4 back

