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Modified theories of gravity vs GR

@ Vacuum GR

Lrg =R
e Modified action

e Spherically symmetry

_ 2 Qv UVOoN
o Birkhoff’s theorem; Lama = Btal + Ry B + Y Ryuor R

e.g. Schwarzschild black hole
o E.O.M are complex

e Axial symmetry;
o No-hair theorem:; o Birkhotf'stheorem-

e.g. Kerr black hole o Particular f(R) [SX et al.,CQG-225006]

Schwarzschild black hole
@ No-hair theorem....?
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f(R) model and solution
Modified Einstein-Hilbert action:
1
S = m/d‘*gc\/?gf(R) FR) = (a0 + R’ ag,a1 >0 p> 1. (1)

o Case p=2

o Line-element up to O(x?) (x = a/m, spin parameter)

ds® = —et(r) [U(p) + 2V (p) cos® 0] dr? + ﬁ [1 - (ZEZ; + sirpl2 0)] dp? (2)

2
—2xV(p) p*sin®0dr dp + [p* + x* cos® 0] d6” + p*sin” § [1 + % + 2V (p) sin? 0} do?

Gop >0 = V(p)>0. 1=t/M,p=r/M.
[ Hartle & Thorne(1968)]
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Slowly rotating Kerr metric

The slowly rotating approximation upto quadratic order of y;

1 2 2
4 —7 = X 3 (1 - [1 — } cos? 9) dp2 + (p2 + x2 cos? 9) d6?
1 ’ ﬁﬂ (1__ 2) P
P

+ [pQ + x? (1 + isin2 6)} sin? fd¢? (3)
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Slowly-rotating black hole solution (SRBH) in f(R)

Vacuum f(R) field equations

/ 1 i i
f (R)Ruu - §f(R)g;w - v,uvuf (R) + guuljf (R) =0 (4)
Simplifying field equations;
Wo(p) 9 Wi(p) Wa(p)

127U ) - ) +42 X 235U ) - dem g 0 ©
where, ®(p) = p[i () + In U(p)]].
o Wi(p) = O[U(p), ()] and Wa(p) = O[U(p), ()]
o Wo(p) = O[U(p), 1(p), V(p)]

e Evaluate U(p) and pu(p) by solving Wi (p) = 0 or Wa(p) = 0 without the knowledge of
V(p)

— =
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Slowly-rotating black hole solutions (SRBH) in f(R)

@ The solutions are (Wa(p) = 0);

c, C 2
U(p)zl—f+73+1§za Co=0, r=oao/m
3
M(;):ln{l+N1(/p V(0 + 1208~ 1201 8%) /dpﬂ’ <t
V(P):Z#
=0

where C1, Cp, N1 and Cj;2 are integration constants.

e Multiple slowly-rotating black hole solutions (SRBH) for vacuum
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Comparing asymptotically non-flat SRBH in GR

Asymptotically non-flat in GR

- Ch P2
° U(p) =1 P + 12“2
u(p) =0
C
Vip) = —=
(p) P
e Unique

Infinite non-flat SRBH in modified
gravity

o Wa(p) =05

o Infinite choice for U(p) and u(p)

o Arbitrary V(p)
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Properties of the SRBH solution, ¢; #0 (Event horizon)

e Event horizon (¢g”” = 0);

B F2/3 (2 n2)1/3 _95/3 ,4/3

i3 i H=2v/9+4Kk%2+6

@ The py depends on x? as compared to the SR Kerr. x? = 0.33, matches to GR.*

PH

0.0 0.2 0.4 0.6 0.8 1.0
K2

Figure 1: Plot of pg as a function of x? for Y = 0.1 and C3 = 1.
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Properties of the SRBH solution, ¢; #0 (Ergosphere)
e Ergosphere (gr» = 0):
I 5, 3 2 2 .2
3P TP =207+ C3x" cos™(0) =0 (10)
The event horizon is very close to the ergosphere for SRBHs

o Red-curve — event-horizon, two black curves — ergosphere. Variation due to x? cos
is visible in the inner part of the ergoregion
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Properties of the SRBH solution, ¢; #0 (Effective potential )

o The effective potential (Vog = 0 = 9,Veg) = circular orbits in the equatorial plane.
The circular orbits in the SRBH in f(R) are smaller than Kerr.

5 ° J
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Figure 2: Plot of Vg of a test particle in the equatorial plane for u(p) = 0.
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Discussion and Conclusions

e For a class of f(R) models, we obtained asymptotically non-flat, infinite number of
SRBH solutions.

e Two branches (Wi(p) = 0 or Ws(p) = 0) of SRBH solutions and a collapse of a star
might lead to a BH in either one of these branches.

e In GR, no-hair theorems concern mostly black hole solutions with flat asymptotics.
Situation can be different in the case of modified theories of gravity.

e Analyzed the kinematical properties of the SRBHs.

o Interested to know whether one can obtain non-singular BH solutions from the other
branch Wi(p) = 0.
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Thank You
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f(R) model and solution EOM by eliminating terms greater than x?:
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Features of field equations

@ T and T3 contain fourth-order derivatives of U(p), u(p) and V(p), while To and Ty
contain third-order derivatives of U(p), u(p) and V(p). T5 contains third-order
derivatives of U(p) and u(p), and second-order derivative of V(p).

@ 11,15 and T3 do not contain terms in first-order in Y, i.e.
TZ-(O) (p) + Ti(H)(p) X%+ O(x?), where i = 1,2 and 3. Additionally, these three
components’ y independent terms depend only on U(p) and pu(p).

@ T, only contains second-order in Y, i. e. TAEH) (p) X% + O(x?), while T5 only contains
first-order in x;, i. e, T5(H) (p)x +O(3).

@ It is possible to express G¢ and gf, in terms of 17,75, 13,7 and T5.

@ Since the equations of motion contain fourth-order derivatives of U(p), V(p), and
w(p), an exact solution will have four independent constants.
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Slowly-rotating black hole space-time(SRBH)

Two procedures adopted to obtain Eq. (5) ‘

(A) Eliminate fourth-order

derivatives of U(p) in
Eqgs. (11a, 11c) leading
to third order
derivatives of U(p)

(I) Eliminate fourth-order
derivatives of p(p) in
Egs. (11a, 11c) leading
to third order

derivatives of p(p)

(B) Obtain third-order
differential equation for
U(p) from Eq. (11b)

(II) Obtain third-order
differential equation for
u(p) from Eq. (11b)

Eliminate third-order
derivatives of U(p)
from (A) & (B)

Eliminate third-order
derivatives of u(p)
from (I) & (IT)

Leads to Eq. (5)

Leads to Eq. (5)
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