Seventeenth Marcel Grossmann Meeting

Contribution ID: 257

Type: Talk in a parallel session

Asymptotically Schwarzschild solutions in f(R)extension of General Relativity

Tuesday, 9 July 2024 17:36 (18 minutes)

We consider the gravitational field outside a static, spherically symmetric source in the context of a general f(R) extension of General Relativity. We study the modified Einstein equations (EE), which involve the two free potentials of the metric together with f(R) and its derivative $\phi = \frac{\partial f}{\partial R}$, without making any preliminary assumption on f as a function of the scalar curvature. Instead, we do require complete agreement with the usual Schwarzschild solution far from the source and minimal regularity of both the potentials and ϕ as functions of the coordinates.

Under these conditions we are able to perturbatively solve the modified EE, explicitly compute the leading correction to the Schwarzschild line element and retrieve a posteriori the corresponding f(R). This is non analytical in R = 0 and depends on two parameters: a universal coupling c_1 and an integer number $n \ge 2$, which determines the order of the correction.

In the second part of the work, we firstly compute the parametrized post Newtonian parameters for the modified Schwarzschild line element: while γ agrees by construction with the strict Cassini bound for every n, the constraint on β from the precession of Mercury places a severe upper bound on c_1 for n = 2. We then compute the leading correction to the gravitational redshift and use observations of the sunlight gravitational redshift to set numerical upper bounds on c_1 at varying n. The corrections to the bending of light from a distant star by the Sun, to the precession of Mercury and to the Shapiro delay are also computed.

The result is a class of f(R) theories built from a purely bottom-up approach and compatible with the local tests. This result can also help constraining exact f(R) models working in Cosmology, since it provides the correct local limit.

Primary authors: SCALI, Federico (University of Insubria - Department of Science and high Technology and INFN (National Institute for Nuclear Physics) section Milan); Dr PIATTELLA, Oliver Fabio (University of Insubria - Department of Science and high Technology and INFN (National Institute for Nuclear Physics) section Milan)

Presenter: SCALI, Federico (University of Insubria - Department of Science and high Technology and INFN (National Institute for Nuclear Physics) section Milan)

Session Classification: Theories of gravity: alternatives to the cosmological and particle standard models

Track Classification: Alternative Theories (AT): Theories of gravity: alternatives to the cosmological and particle standard models