GammaTPC: a powerful new MeV gamma ray instrument concept

17th Marcel Grossmann Meeting

- Bahrudin Trbalic
- Stanford/SLAC
- T. Shutt, M. Buuck, M. Convery, S. Jett, N. Di Lalla, A.
- Dragone, A. Pena-Perez, S. Luitz, A. Mishra, Y. S.-Tsai

The unexplored MeV Gamma Ray Sky

Astrophysics Opportunities

- Millisecond Pulsar Timing Array Gravity Waves, H_o
- Excellent transients, multi-messenger
- GW NS mergers bright at MeV
 - Possibly: r-process in real time with nuclear lines
- Huge population of Gamma Ray bursts.
- AGNs
- Compton
- Good polarization sensitivity: magnetic fields
- Nuclear lines

Acceleration mechanism: transition from synchrotron radiation to inverse

Compton scattering

electron-positron pair production $E_{\gamma} \gg 2m_e c^2$

MeV gamma ray measurement

- Gamma ray with multiple Compton scatters, final absorption.
- Each creates recoiling electron track.
- Circle sizes indicate recoil energies.

A difficult problem

MeV gamma ray measurement

• Measure all
$$\{E_i, r_i\}$$

- Deduce sequence
- \rightarrow • Now have r, and θ .

MeV gamma ray measurement

Circle of possible gamma ray directions.

Sky map from point source with some background

5 MeV, 1000 diffuse events

If the initial electron recoil direction is measured

z (cm)

• Reduces circle to an arc

 Significant reduction in confusion

> without e⁻ track direction

with e⁻ track direction

images: Amego

More on this later

Telescope Performance

Far Field Monoenergetic **Point** Source

1. Energy Resolution

2. Angular Resolution

3. Effective Area

4. Background Signal

Sensitivity

The minimum brightness of the source that can be detected

Angular resolution

Energy error

 δE_1

 $\delta E_5 \delta E_6$

 δE_7

5

0

 δE_3

 δE_2

 $\delta\theta(\delta(E_1), \delta E_{tot})$

- Precise 3D readout over lacksquarea large volume
- Minimal energy error

Geometry error

Better point also gives better (sequence) reconstruction

Time Projection Chamber – TPC & LAr

Cathode plane: -10 kV. Light readout SiPM array E Reflective field Anode plane: 0V. cage walls \mathcal{X}, \mathcal{Y} charge readout.

- 3D readout with 2D instrumentation
 - Allows scaling to large mass
- Uniform detection volume and response
- Fine grained readout possible

photo absorption pair production Ar low Z maximizes Compton energy window

• Low density -> Larger Mean Free Path

GammaTPC Concept

3 m

- LAr at ~120 K, carbon fiber vessel
- ~20 cm segmentation for pile up
- 10 m², 4 ton configuration shown
 - Readout + vessel mass ~300 kg
 - Readout cost ~\$1.2M /m²
- Calorimeter needed for high energy Compton and pairs
- Tracker thickness and area optimized for ~1 MeV

cathode + SiPMs

• Hemispherical pressure vessel: 2π FOV

- Complicated process results in charge and light
- Recombination fluctuations smears these signals
- Combined signal should have respectable energy resolution, comparable to Si, worse than Ge or CZT.
- Light measurement with SiPM array + wave shifter

Energy = Charge + light in LXe

Interaction Locations

High fidelity simulation with PENELOPE

• Tracks bigger than required σ < ~1 mm resolution: must image and find head. Also measure initial direction, pair tracks

Pixel Readout

• Tracks bigger than required σ < ~1 mm resolution: must image and find head. Also measure initial direction, pair tracks

• Two problems:

• *Power:* ~100 μ W/ch with low noise; space power budget 10^3 higher at \sim W/m²

• Diffusion: tails of charge lost when pitch \simeq diffusion

GAMPix

ArXiv:2402.00902

- Tracks bigger than required $\sigma < ~1$ mm resolution: must image and find head. Also measure initial direction, pair tracks
- Two problems:
 - *Power:* ~100 μW/ch with low noise; space power budget 10³ higher at ~W/m²
 - Diffusion: tails of charge lost when pitch \simeq diffusion
 - Grid Activated Multi-Scale Pixel readout GAMPix • Measure charge *twice*
 - Coarse inductance grid insensitive to diffusion
 - Pixels image track
 - Power cycle pixels based on coarse signal, reduces power and data, by ~10³

- Coarse grid induction signals highly position dependent
- Detailed simulation: COMSOL, Garfield++ Ramo's theorem, full electronics chain
- Pixel spatial information corrects coarse grid integral to <1%, meeting requirements.

Upcoming test with CRYO (σ_e ~100e-) readout

Excellent track reconstruction

 $cos(\delta)$

GammaTPC

[1] https://megalibtoolkit.com/home.html[2] https://github.com/tashutt/Gampy/

Event Reconstruction

RandomTreeClassifier

- 4% good mis-classified

Backgrounds

- Equatorial LEO
- Pile-up < 5% for ~17.5 cm segments
- Backgrounds in sensitivity estimates:
 - Cosmic photons
 - Ar activation modest due to low Z
 - ³⁹Cl, ³⁸Cl, ⁴¹Ar, ³⁷S, ³⁸S, ⁴⁰Cl, ...
 - Csl activation high rate, but tagged + reconstructed
 - Albedo photons mostly eliminated by Csl calorimeter + reconstruction.
 - Charged particles tagged by ACD

nts tes:

Csl Calorimeter

[erg/cm²/s] 10^{-9} 10⁻¹⁰ - E^2 Sensitivity x 10^{-11} 10⁻¹²∔ Continuum

Preliminary Compton Sensitivity Continuum Sensitivity

Only include 3-10 hits

Angular Resolution and Efficiency

Angular Resolution and Efficiency

Pair Sensitivity

- Not yet studied
- Tracker highly efficient at 2 radiation lengths
- Low Moliére scattering in LAr may compensate lack of layers with gaps
- 100 MeV example shown, $\Delta\theta \sim 1^{\circ}$ with crude PCA treatment.
- Upper energy range set by calorimeter

- LAr TPCs are powerful new technology, especially in era of low launch costs. Combines large mass, and sensitive readout.
- Substantial development remains, but we are making progress on core challenges
- Plenty of work to go around!

Paper or ArXiv 😳

Line Sensitivity

- Builds on cryogenic ASIC development for DUNE, quantum instrumentation.
- Transistor-level modeling of power switching front end (TSMC + SLAC data): $\Delta T_{on} \sim 500$ ns, $\sigma_e \sim 15e^{-1}$
- Switched capacitor storage + slow multiplexed sparse sampling to be adapted from other designs

GAMPix fast power cycle ASIC

Aldo Peña Perez

Charge neutralization

- Slow drifting Ar⁺ ions create space charge
- Field distorted by few %; traps charge
- Perhaps ok? Calibrate?
- Neutralization concept: photocathode on lossy light pipes, pulsed with 275 nm light. QE ~10⁻⁴ needed
- Needs work
- Synergy with DUNE calibration, Michigan St. and Hawaii groups.

Electron track direction

LAr in space

 Passive cooling would require untenable Sun + Earth shield

- Cryocooler should work
 - Smaller "heat lift" at ~120 K, 10 bar.
 - Few W/m² power budget
- Need single phase Ar + sub-cooling.
 - Control of volumes + displacement element (e.g., piston) to create overpressure.
 - Spin spacecraft?

4 mm carbon fiber shell holds 20-30 bar!

g. nt

More on GAMPix

- Coarse + fine measures diffusion; hence depth; hence pile-up rejection
- Two possible DUNE application:
 - Galactic SN signal.
 - Beam ν energy resolution, reconstruction.
- GAMPix powerful whenever imaging at diffusion limit

y (cm)

-150

-200

Galactic SN neutrinos

Particle rate in space is challenge

Equatorial low earth orbit required

- Lowest background orbit required
- Pile-up, after segmentation
 < 10%
- Backgrounds
- Space charge

GammaTPC Development

- Modest funding to date internal, APRA
- Significant leveraging of DUNE program overall, and group at SLAC.
 - Joint TPC development with R&D for SN neutrino calibration
- SLAC Liquid Noble Test Facility LNTF
 - Initially LZ system test, now hosts R&D for XLZD, DUNE, nEXO, GammaTPC, cryogenic ASICs
- Possible synergy with GRAMS balloon program?
- Small zero-g prototype needed

IV. Accuracy of the algorithm

With this procedure we achieve amazing positional and charge readout accuracy.

DUNE implementation

- range.

pixel chip

