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Dark matter
26.6%

Baryonic matter
5%

Dark energy
68.4%

- Planck Collaboration 2018






What other evidence is found in nature?

e Circular velocity curves

e Dispersion velocity curves
e Gravitational lensing

e Galaxy clusters

® Bullet cluster

e Lyman o forest

e Structure formation



What other evidence is found in nature?

e Circular velocity curves

e Dispersion velocity curves
e Gravitational lensing

e Galaxy clusters

® Bullet cluster

e Lyman o forest

e Structure formation

Astronomy can help us understand more about dark matter!






What about the microscopic nature of dark matter?

Standard- Sterile
model

: neutrinos
neutrinos

We have a plethora of different
dark matter models to try e

Super- Extra
symmetry dimensions

Dark matter Weak scale

Effective

models theory

Macroscopic Macros

Bertone &
' : Tait, Nature
Primordial ST (sl 562, 51-56
black holes L y i (2018).




What about the microscopic nature of dark matter?

We have a plethora of different
dark matter models to try

We will adopt as DM candidate

a right-handed neutrino of mass
of order keV

Standard-
model
neutrinos

Dark matter

Macroscopic Macros

Primordial MaCHOs
black holes

Sterile
neutrinos

Extra
dimensions

Weak scale

Simplified Ef;?eclgve

models theory

Bertone &
Tait, Nature
562, 51-56
(2018).
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—— Predicted MW circular velocity

Inner bulge
Main bulge
- Thin disk + Thick disc
® Sofue 2017 [2] observations
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In particular, we will choose m =200 keV

e This value is according to beyond LCDM theories (light DM)
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In particular, we will choose m =200 keV

e This value is according to beyond LCDM theories (light DM)
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In particular, we will choose m =200 keV

e This value is according to beyond LCDM theories (light DM)
e And is a suitable candidate to be the fermion of a successful fermionic dark

matter core-halo model N A
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The model is in the IR domain of a four-fermion interaction of NJL type
(Nambu & Jona-Lasinio 1961, Phys. Rev. 124, 246),
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The model is in the IR domain of a four-fermion interaction of NJL type
(Nambu & Jona-Lasinio 1961, Phys. Rev. 124, 246),

.
-

g But at tree level, right-handed

o neutrino electron interaction
This induces _ : .
using this coupling is not

dominant
Which

corresponds to

1’
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The right-handed neutrinos N can radiatively decay into a left-handed SM
neutrino v and a photon y. ~ .

Electromagnetic Shakeri et al. (2020),
channel JHEP, 2020, 194




The right-handed neutrinos N can radiatively decay into a left-handed SM
neutrino v and a photon y. ~ .

This vertex is represented as
an effective operator

R A /
6 = (UZU£> PLAENG A, +hec.

Electromagnetic Shakeri et al. (2020),
channel JHEP, 2020, 194




Hence, the interaction between a right-handed neutrino and a bounded
electron on an atom of the detector will be described by
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Hence, the interaction between a right-handed neutrino and a bounded
electron on an atom of the detector will be described by

.
-

Interaction Lagrangian

Folt = _2\/§GF ([NeVM?RPRUe] ['L_Le’VMPLVe])




Hence, the interaction between a right-handed neutrino and a bounded
electron on an atom of the detector will be described by

-
-

The squared matrix element is given by

T 4m? T 5 : 9
|M|*(ERg,q°,v) = p 62 (2mym, + 2m.Eg + mx)

{ (2C + ("0)2 [m,{, (2777@Ex + mi) (Ey, — LH)] RS

201" [me (2myER + m‘i,) (Ex — Er)] +

+ (2C;1 + Cy) (2C3 + Cy) [ng (L() -+ bf? — QEXER) + memi (Ey — ER')] }




Using experimental and cosmological constraints it is possible to put an
upper bound on the coupling constant -
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We want to study the ionization of atoms due to right-handed neutrino
electron interactions - -

lonization
signal

Dror et al. (2021), Phys.
Rev. D 103, 035001




We can apply the Lagrangian described before to model the interaction
N+e>v+e X -
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d : 4 . 3 -
The direct interaction ionizes the atom.
This constitutes an event and will allow the
events rate to be defined.
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We can apply the Lagrangian described before to model the interaction
N+e>v+e - -

d : 4 . 3 -
The direct interaction ionizes the atom.
This constitutes an event and will allow the
events rate to be defined.

!

(Z n
/dq E 7/( Inm((] ER A[( )l | 1()i1(E1) q. |
R

([R”l B /),x

__1mion

dER 1287?77’1,;7712

l Under the assumption mv << g
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Where q yields
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Ionization form factor:

2

| fak i )] ": Z > @+ +1)(2L + 1)

I'=0 L=|l—1'|

A,g oo l+ll !] [, L

00 0] I/(]II Rkl (I)R,l[( )JL((II)

It is related with the quantum mechanics of
the atom

Outgoing electron

radial wavefunction
Bounded electron

It does not depend on the nature of the radial wavefunction
scattering process
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Bounded radial
wavefunctions
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Ionization form factor




Squared matrix element




When the events rate for each shell is computed, it is possible to calculate the
total events rate ) -



When the events rate for each shell is computed, it is possible to calculate the
total events rate : -

Due to the separate nature of the quantum mechanics and scattering process,
each events rate will reflect the behaviour of the ionization form factor
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Conclusions:

e We used the radiative 1 loop decay ofia right—Tlanded neutrino as an
effective vertex to study DM-e inelastic Scattering processes.

e We defined a theoretical framework that allow us to compute an
observable quantity.

e We developed numerical methods to compute theoretical events rate.



Conclusions:

-

e We used the radiative 1 loop decay ofya right-handed neutrino as an
effective vertex to study DM-e inelastic Scattering processes.
e We defined a theoretical framework that allow us to compute an

observable quantity.
e We developed numerical methods to compute theoretical events rate.

Future work:

e To use the efficiencies of different DM detectors to compute the

predicted events rate.
e To compute experimental limits on % vs. m plot.



