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Astronomy can help us understand more about dark matter!
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In particular, we will choose m = 200 keV

Bertone & 
Tait, Nature 
562, 51–56 
(2018).

● This value is according to beyond LCDM theories (light DM)
● And is a suitable candidate to be the fermion of a successful fermionic dark 

matter core-halo model Argüelles et al 2018,                     
PDU, 21, 82-89

See plenary talk of Carlos Argüelles on 
Thursday morning for further details!
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But at tree level, right-handed 
neutrino electron interaction 
using this coupling is not 
dominant
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The right-handed neutrinos N can radiatively decay into a left-handed SM 
neutrino 𝜈 and a photon γ.

This vertex is represented as 
an effective operator

Electromagnetic 
channel

Shakeri et al. (2020), 
JHEP, 2020, 194
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We want to study the ionization of atoms due to right-handed neutrino 
electron interactions

Dror et al. (2021), Phys. 
Rev. D 103, 035001



We can apply the Lagrangian described before to model the interaction         
N + e → 𝜈 + e
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The direct interaction ionizes the atom. 
This constitutes an event and will allow the 
events rate to be defined.

We can apply the Lagrangian described before to model the interaction         
N + e → 𝜈 + e

Under the assumption mv << q

Where q yields
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It is related with the quantum mechanics of 
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Bounded electron 
radial wavefunctionIt does not depend on the nature of the 

scattering process



Outgoing radial 
wavefunctions

k’ = 50 keV

l’ = l

m = 200 keV



Bounded radial 
wavefunctions



Ionization form factor



Squared matrix element
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Due to the separate nature of the quantum mechanics and scattering process, 
each events rate will reflect the behaviour of the ionization form factor



Individual and total differential events rate

Preliminary results



Conclusions:

● We used the radiative 1 loop decay of a right-handed neutrino as an 
effective vertex to study DM-e inelastic scattering processes.

● We defined a theoretical framework that allow us to compute an 
observable quantity.

● We developed numerical methods to compute theoretical events rate.
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Future work:

● To use the efficiencies of different DM detectors to compute the 
predicted events rate.

● To compute experimental limits on 𝒢ᵣ vs. m plot.


