
Linear Dynamics and Gravitational Waves 
in Gravitational Quantum Field Theory

Da Huang

1@17th Marcel-Grossmann Meeting, Pescara

Yuan-Kun Gao, DH, Yong-Liang Ma, Yu-Feng Zhou & Yue-Liang Wu, 

arXiv: 2403.17619 

2024/7/12

National Astronomical Observatories, 
Chinese Academy of Sciences



2

Content

Ø Introduction and Motivation

Ø Brief Introduction to GQFT

Ø Linearized Gravitational Equations

Ø Gravitational Wave Degrees of Freedom

Ø Newtonian Limits and Experimental Tests 

Ø Conclusions 

2024/7/12 @17th Marcel-Grossmann Meeting, Pescara



2024/7/12 @17th Marcel-Grossmann Meeting, Pescara 3

Ø Among four fundamental 
interactions, gravity is the 
weakest and most mysterious.

Ø It governs the evolutions of 
most astrophysical systems 
and even the whole Universe.

Ø Currently the standard theory 
of gravity is Einstein’s General 
Relativity.

Introduction
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Ø GR has passed all astrophysical and cosmological tests:

Introduction

Grav. Redshift Light Deflection

Time DelayMer. Perihelion
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Ø Hulse-Taylor binary pulsar B1913+16: Indirect Evidence of GWs

Introduction

Ø GW150914 by LIGO: Direct Discovery of GWs
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Ø Hulse-Taylor binary pulsar B1913+16: Indirect Evidence of GWs

Introduction

Ø GW150914 by LIGO: Direct Discovery of GWs
General Relativity 

have passed all tests!
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Ø Despite its success, GR can be a low-energy effective field theory 
as indicated by its non-renormalizability.  

Motivation

ü What is the nature of gravity?
ü How to quantize gravity? 

Ø Important Questions:

Ø Hints:
ü As inspired by electromagnetic, weak and strong interactions, 

we should formulate gravity with gauge principle.  
ü Many attempts: Einstein-Cartan, Teleparallel Equivalent GR, ..

See e.g. F. W. Hehl et al. (1976) & L. Heisenberg (2023) for reviews
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Ø GQFT is a new gauge formulation of gravity, in which the gauge 
fields and transformations are represented wrt fermions.   

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

Ø New formulation of 4-dimensional Dirac fermions 

Y.-L. Wu(2022)

The hermitian action in obtaining the above Dirac equation can be constructed as follows:

SD =

∫
d4x

1

2

(
ψ̄(x)γµi∂µψ(x) +H.c.

)
−m ψ̄(x)ψ(x), (1)

with ψ̄(x) = ψ†(x)γ0 and m being the mass of Dirac fermion.
In the SM of electroweak and strong interactions, the charged leptons and quarks are

actually Weyl fermions due to their weak interactions which bring on the maximal parity
violation. Such a Dirac fermion in the electromagnetic interaction should be regarded as
the superposition of left-handed and right-handed Weyl fermions. By representing the Dirac
fermion in a chiral spinor representation of eight-dimensional Hilbert space, we can express
the action of free motion massive Dirac fermion given in Eq.(1) into the following equivalent
form:

S =

∫
d4x

1

2
{Ψ̄−(x)Γ

aΓ−δ
µ

a iDµΨ−(x)− Ψ̄−(x)(m5Γ
5Γ− +m6Γ

6Γ−)Ψ−(x) +H.c.}, (2)

where we have introduced the following definitions:

Ψ−(x) = Γ−Ψ(x) ≡
(
ψL(x)

ψR(x)

)
,

ψL,R(x) = γ∓ψ(x),

Γ∓ =
1

2
(1∓ γ̂7), γ∓ =

1

2
(1∓ γ5),

Γa = σ0 ⊗ γa, γa = δaµγ
µ,

Γ5 = iσ1 ⊗ γ5, Γ6 = iσ2 ⊗ γ5,

Γâ ≡ 2(Σâ
− + Σâ

+), Σâ
∓ ≡

1

2
ΓâΓ∓,

γ5 = −iγ0γ1γ2γ3 = σ3 ⊗ σ0,

γ̂7 = −Γ0Γ1Γ2Γ3Γ5Γ6 = σ3 ⊗ γ5, (3)

with â ≡ (a, 6, 7). Where γa and γ5 are the usual γ matrices and δ µ
a is the Kronecker

symbol. Note that γ∓ and Γ− provide the chiral project operators via the chiral γ-matrices
γ5 and γ̂7 defined in four-dimensional and eight-dimensional Hilbert spaces, respectively.

It is noticed thatΨ−(x) defines a chirality-based Dirac spinor in the chiral spinor represen-
tation of eight-dimensional Hilbert space with ψL,R(x) denoting the ordinary left-handed and
right-handed Weyl fermions in four-dimensional Hilbert space. Note that we have introduced
the Greek alphabet (µ, ν = 0, 1, 2, 3) and Latin alphabet (a, b,= 0, 1, 2, 3) to distinguish four-
vector indices in coordinate spacetime and noncoordinate spacetime, respectively. Both the
Greek and Latin indices are raised and lowered by the constant metric matrices, i.e., ηµν and
ηab with ηµν(ηµν)=diag .(1,-1,-1,-1) and ηab(ηab)=diag .(1,-1,-1,-1). All the scalar product of
vectors and tensors is obtained via the contraction with the constant metric matrices ηµν

and ηab, i.e., V µVµ = ηµνVµVν = ηµνV µV ν and AaAa = ηabAaAb = ηabAaAb. The system of
units is chosen such that c = ! = 1.

The mass term of Dirac fermion is produced via the following relations:

Ψ̄−(x)(m5Γ
5Γ− +m6Γ

6Γ−)Ψ−(x) = mΨ̄−(x)Γ
6Γ−e

i2αpγ7Ψ−(x)

≡ mΨ̄−(x)Γ
6Γ−e

−i2αpγ5Ψ−(x) → mΨ̄−(x)Γ
6Γ−Ψ−(x) = mψ̄ψ, (4)

where we have made a replacement in obtaining the last form:

Ψ−(x) → e−iαpγ7Ψ−(x) ≡ eiαpγ5Ψ−(x), (5)

The hermitian action in obtaining the above Dirac equation can be constructed as follows:

SD =

∫
d4x

1

2

(
ψ̄(x)γµi∂µψ(x) +H.c.

)
−m ψ̄(x)ψ(x), (1)

with ψ̄(x) = ψ†(x)γ0 and m being the mass of Dirac fermion.
In the SM of electroweak and strong interactions, the charged leptons and quarks are

actually Weyl fermions due to their weak interactions which bring on the maximal parity
violation. Such a Dirac fermion in the electromagnetic interaction should be regarded as
the superposition of left-handed and right-handed Weyl fermions. By representing the Dirac
fermion in a chiral spinor representation of eight-dimensional Hilbert space, we can express
the action of free motion massive Dirac fermion given in Eq.(1) into the following equivalent
form:

S =

∫
d4x

1

2
{Ψ̄−(x)Γ

aΓ−δ
µ

a iDµΨ−(x)− Ψ̄−(x)(m5Γ
5Γ− +m6Γ

6Γ−)Ψ−(x) +H.c.}, (2)

where we have introduced the following definitions:

Ψ−(x) = Γ−Ψ(x) ≡
(
ψL(x)

ψR(x)

)
,

ψL,R(x) = γ∓ψ(x),

Γ∓ =
1

2
(1∓ γ̂7), γ∓ =

1

2
(1∓ γ5),

Γa = σ0 ⊗ γa, γa = δaµγ
µ,

Γ5 = iσ1 ⊗ γ5, Γ6 = iσ2 ⊗ γ5,
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Ø Gauge Transformation Generators

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

Y.-L. Wu(2022)

Isometric to Poincare Group

with

γ7 = σ3 ⊗ σ0 ⊗ σ0, tan 2αp = m5/m6,

m =
√

m2
5 +m2

6. (6)

Note that such a replacement for the chirality-based Dirac spinor preserves the kinetic term
of the action in Eq.(2) due to its invariance under such a transformation.

The Γ-matrices Γâ with â = (a, 5, 6) and γ̂7 defined in eight-dimensional Hilbert space
satisfy the anticommuting relations of Clifford algebra:

{Γâ,Γb̂} = ηâb̂, {Γâ, γ̂7} = 0, (7)

which indicates that the mass of Dirac fermion may have a geometric origin via the extra
dimension of spacetime as discussed in ref.[26].

It can be verified that the action given in Eq.(2) possesses the following associated sym-
metry:

GS = P 1,3
! SO(1, 3) "̃!SP (1, 3)"W 1,3 × U(1)

= PO(1, 3) "̃!WS(1, 3)× U(1), (8)

where the symbol “ "̃! ” is adopted to notate the associated symmetry in which the trans-
formation of spin symmetry group SP(1,3) in Hilbert space must be coincidental to that of
the isomorphic Lorentz symmetry group SO(1,3) in Minkowski spacetime.

PO(1,3) denotes the inhomogeneous Lorentz symmetry group or Poincaré symmetry
group in four-dimensional Minkowski spacetime,

PO(1, 3) = P 1,3
! SO(1, 3),

where the symbol ‘!’ is used to indicate that PO(1,3) is a semi-direct product group with
P1,3 representing the translational symmetry group of coordinates in Minkowski spacetime.

WS(1,3) is an enlarged spin symmetry group, which is also a semi-direct product group
expressed as follows:

WS(1, 3) ≡ SP (1, 3)"W 1,3. (9)

It can be checked that SP(1,3) group generators Σab and W1,3 group generators Σa
− have the

following explicit forms:

Σab =
i

4
[Γa,Γb],

Σa
− =

1

2
ΓaΓ−, Γ− =

1

2
(1− γ̂7), (10)

which satisfy the group algebra:

[Σab,Σcd] = i(Σadηbc − Σbdηac − Σacηbd + Σbcηad),

[Σab,Σc
−] = i(Σa

−η
bc − Σb

−η
ac),

[Σa
−,Σ

b
−] = 0, (11)

where W 1,3 appears as a translation-like Abelian-type symmetry group in Hilbert space.

Ø Commutators
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The Γ-matrices Γâ with â = (a, 5, 6) and γ̂7 defined in eight-dimensional Hilbert space
satisfy the anticommuting relations of Clifford algebra:
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Ø Inhomogeneous Spin Gauge Symmetry

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

Y.-L. Wu(2022)

ü Covariant derivative: 

ü Field Strengths

independent of the choice of local field configurations, from which the inhomogeneous spin
symmetry WS(1,3) and electric charge symmetry U(1) of chirality-based Dirac spinor Ψ−(x)
are postulated to be local gauge symmetries. Meanwhile, the inhomogeneous Lorentz group
symmetry (Poincaré group symmetry) PO(1,3) of coordinates is considered to remain a
global symmetry. In such a consideration, the inhomogeneous spin gauge symmetry WS(1,
3) in Hilbert space of spinor field does become distinguishable from the inhomogeneous
Lorentz group symmetry PO(1,3) in Minkowski spacetime of coordinates. It becomes natu-
ral that the inhomogeneous spin gauge symmetry group WS(1,3) provides the so-called in-
ternal Poincaré-type gauge symmetry group PG(1,3) proposed in[19], i.e., PG(1,3)≡WS(1,3)
= SP(1,3)!W1,3.

A. Inhomogeneous spin gauge symmetry with the genesis of gravigauge field

Based on the gauge invariance principle, the gauge fields Âµ(x) and Aµ(x) in correspon-
dence to the inhomogeneous spin gauge symmetry WS(1, 3) and electromagnetic gauge
symmetry U(1) are introduced to ensure the theory be gauge invariance. To realize such a
gauge invariant theory, it is practically carried out by replacing the usual derivative operator
of coordinates in Minkowski spacetime into the following covariant derivative operator:

i∂µ → iD̂µ ≡ i∂µ + Âµ(x) + Aµ(x), (16)

with

Âµ(x) ≡ Aµ(x) + Ǎµ(x),

Aµ(x) ≡ A ab
µ (x)

1

2
Σab, Ǎµ(x) ≡ Aa

µ(x)
1

2
Σ−a, (17)

where Âµ(x) is referred to as inhomogeneous spin gauge field with A ab
µ (x) representing the

spin gauge field relevant to the spin gauge symmetry SP(1, 3) and Aa
µ(x) denoting the
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dence to the inhomogeneous spin gauge symmetry WS(1, 3) and electromagnetic gauge
symmetry U(1) are introduced to ensure the theory be gauge invariance. To realize such a
gauge invariant theory, it is practically carried out by replacing the usual derivative operator
of coordinates in Minkowski spacetime into the following covariant derivative operator:

i∂µ → iD̂µ ≡ i∂µ + Âµ(x) + Aµ(x), (16)
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Ø Lagrangian

Indeed, it can be verified that Ωab
µ is completely determined through the We-spin

invariant-gauge field A a
µ with the following explicit form:

Ωab
µ =

1

2

(
Âaν

F
b
µν − Âbν

F
a
µν − ÂaρÂbσ

F
c
ρσAµc

)
,

F
a
µν(x) = ∂µA

a
ν(x)− ∂νA

a
µ(x), (33)

where we have introduced the dual We-spin invariant-gauge field Â µ
a (x) defined as follows:

Â µ
a (x)Aa

ν(x) = Â µ
a (x)Aνb(x)η

ab = η µ
ν ,

Â µ
a (x)Ab

µ(x) = Â µ
a (x)Aνb(x)ηµν = η b

a , (34)

which indicates that when regarding Aa
µ(x) as a matrix field, Â µ

a (x) is viewed as the inverse

matrix field of Aa
µ(x). The existence of Â µ

a (x) requires a non-zero determinant of matrix
field Aa

µ(x),

A(x) ≡ detAa
µ(x) #= 0, or Â(x) ≡ det Â µ

a (x) #= 0. (35)

Note that the field strength Fa
µν(x) is We-spin gauge invariant but no longer spin gauge

covariant, which distinguishes, as indicated by a different letter style, from the spin gauge
covariant field strength Fa

µν(x) defined in Eq.(26).
It can be checked that the gauge transformation of A a

µ in the vector representation of
spin gauge symmetry SP(1,3) does bring Ωab

µ to a proper gauge transformation in the adjoint
representation of spin gauge symmetry SP(1,3), i.e.:

A
′ a
µ (x) = Λa

c(x)A
c
µ (x), Â

′ µ
a (x) = Λ c

a (x)Â µ
c (x), Λa

c(x) ∈ SP(1,3),

Ω
′ab
µ (x) = Λa

c(x)Λ
b
d(x)Ω

cd
µ (x) +

1

2
(Λa

c(x)∂µΛ
bc(x)− Λb

c(x)∂µΛ
ac(x)). (36)

In general, there is no way to eliminate the spin gauge field part Ωab
µ (x) by making a spin

gauge transformation, which differs completely from the usual internal gauge field. This can
be verified from the spin gauge field strength which can also be decomposed into two parts:

Fab
µν(x) ≡ Rab

µν(x) + Fab
µν(x),

(37)

with the following explicit forms:

Rab
µν(x) = ∂µΩ

ab
ν − ∂νΩ

ab
µ +Ωa

µcΩ
cb
ν −Ωa

νcΩ
cb
µ ,

Fab
µν(x) = DµA

ab
ν −DνA

ab
µ +Aa

µcA
cb
ν −Aa

νcA
cb
µ ,

DµA
ab
ν (x) = ∂µA

ab
ν +Ωa

µcA
cb
ν +Ωb

µcA
ac
ν , (38)

where Rab
µν is purely the field strength of Ωab

µ (x). Since Ωab
µ (x) is uniquely determined by the

We-spin invariant-gauge field A a
µ , there are no additional independent degrees of freedom

involved in the decomposition of spin gauge field Aab
µ (x).

It can be verified that the field strength Rab
µν is related to Riemann-type curvature tensor

as follows:

Rab
µν(x) = A a

ρ (x)Â
bσ(x)R ρ

µνσ(x) (39)

Riemann Tensor Spin Gauge Field When making the scaling gauge fixing condition to be in Einstein basis, we are able to
simplify the above action into the following form:

SD ≡
∫
[d4x]χ(x)L(e)

≡
∫
[d4x]χ(x){(χ̂µν Ψ̄−Σ

a
−χµaiDνΨ− −mΨ̄−Γ

6Ψ− +H.c.)

−
1

4
χ̂µµ′

χ̂νν′FµνFµ′ν′ −
1

4
χ̂µµ′

χ̂νν′F ab
µν Fµ′ν′ab

+
1

4
m2

Gχ̄
µνµ′ν′

aa′ F a
µνF

a′

µ′ν′ +
1

4
g−2
G M2

κ χ̃
µνµ′ν′

aa′ F a
µνF

a′

µ′ν′}, (93)

where all scaling charged fields are understood to be in Einstein basis and the index ‘(e)’

appearing in the gravigauge field χ(e)a
µ (χ̂(e)µ

a ) have been ignored for convenience.
It can be verified from the relation in Eq.(84) that the gravitational gauge interaction

characterized by the gravigauge field is related to Einstein-Hilbert action up to a total
derivative as follows:

1

4
χ χ̃µνµ′ν′

aa′ F a
µνF

a′

µ′ν′ = χR + 2∂µ(χχ̂
µρχ̂ σ

a F
a
σρ), (94)

where we have used the identities:

R ≡ χ̂ µ
b χ̂

ν
a R

ab
µν ≡ ηcbRcb ≡ η c

b η
d
a R

ab
cd ≡ χ̂µσRµσ ≡ χ̂µσχ̂νρRµνρσ. (95)

Such relation and identities reveal the gauge-gravity-geometry correspondence.
Geometrically, Rµνρσ is the so-called Riemann curvature tensor, Rµσ and R correspond

to the Ricci curvature tensor and Ricci curvature scalar. Rρ
µνσ is explicitly given by,

R ρ
µνσ(x) = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (96)

with Γρ
µσ(x) defined as follows:

Γρ
µσ(x) ≡ χ̂ ρ

a ∂µχ
a

σ + χ̂ ρ
a Ω

a
µbχ

b
σ ,

=
1

2
χ̂ρλ(∂µχλσ + ∂σχλµ − ∂λχµσ) = Γρ

σµ, (97)

which is the so-called affine connection or Christoffel symbol in geometry.
When applying for the gauge-gravity-geometry correspondence and adopting the vector-

like spinor representation of Dirac fermion in four-dimensional Hilbert space, the action in
Eq.(93) can be further simplified into the following form:

SD ≡
∫

[d4x]χ(x)L(e)

≡
∫

[d4x]χ(x) {
1

2
(χ̂µνψ̄γaχµaiDνψ +H.c.)−mψ̄ψ

−
1

4
χ̂µµ′

χ̂νν′FµνFµ′ν′ −
1

4
χ̂µµ′

χ̂νν′F ab
µν Fµ′ν′ab

+
1

4
m2

Gχ̄
µνµ′ν′

aa′ F a
µνF

a′

µ′ν′ +
1

16πGN
R }− 2∂µ(χχ̂

µρχ̂ σ
a F

a
ρσ), (98)
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Ø Note 
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and the currents J µ
a and J µ

a are given explicitly by:

J µ
a ≡ 16πGN Ĵ µ

a + J̃ µ
a , Ĵ µ

a ≡ J µ
a + J̃ µ

a ,

J̃ µ
a = Â ρ

a F
c
ρν F̃

µν
c −

1

4
Â µ

a F
c
ρν F̃

ρν
c ,

J µ
a = MκA{(Â ρ

a Â
µ
c − Â µ

a Â
ρ
c )(Ψ̄−Σ

c
−iDρΨ− +H.c.)

+ Â µ
a

m

Mκ
Ψ̄−Γ

6Ψ− − g−2
E (Ĥµµ′

Â ρ
a −

1

4
Ĥ

ρµ′

Â µ
a )Ĥ

νν′FρνFµ′ν′},

J̃ µ
a = MκA{−g−2

G (Ĥµµ′

Â ρ
a −

1

4
Ĥ

ρµ′

Â µ
a )Ĥ

νν′F bc
ρνFµ′ν′bc

+
m2

G

M2
κ

(H̄[µν]µ′ν′

ba′ Â ρ
a −

1

4
H̄

[ρν]µ′ν′

ba′ Â µ
a )F b

ρνFa′

µ′ν′}

−
m2

G

Mκ
Dν(A H̄

[µν]µ′ν′

aa′ Fa′

µ′ν′), (156)

and

J µ
a ≡ 16πGN Ĵ

µ
a + J̃

µ
a , Ĵ

µ
a ≡ J

µ
a + J̃

µ
a ,

J̃
µ

a = χ̂ ρ
a F

c
ρνF̃

µν
c −

1

4
χ̂ µ
a Fc

ρνF̃
ρν
c ,

J
µ

a = χ{(χ̂ ρ
a χ̂

µ
c − χ̂ µ

a χ̂
ρ

c )(Ψ̄−Σ
c
−iDρΨ− +H.c.)

+ χ̂ µ
a

m

Mκ
φΨ̄−Γ

6Ψ− − (χ̂µµ′

χ̂ ρ
a −

1

4
χ̂ρµ′

χ̂ µ
a )χ̂νν′FρνFµ′ν′},

J̃
µ

a = χ{−(χ̂µµ′

χ̂ ρ
a −

1

4
χ̂ρµ′

χ̂ µ
a )χ̂

νν′F bc
ρνFµ′ν′bc

+
m2

G

M2
κ

φ2(χ̄[µν]µ′ν′

ba′ χ̂ ρ
a −

1

4
χ̄[ρν]µ′ν′

ba′ χ̂ µ
a )(Fb

ρν + Sb
ρν)(F

a′

µ′ν′ + Sa′

µ′ν′)}

−
m2

G

Mκ
Dν

(
χ χ̄[µν]µ′ν′

aa′ φ(Fa′

µ′ν′ + Sa′

µ′ν′)
)
. (157)

In the above equations, we have introduced the following definitions:

Dν(A H̄
[µν]µ′ν′

aa′ Fa′

µ′ν′) = ∂ν(A H̄
[µν]µ′ν′

aa′ Fa′

µ′ν′)− A gGAb
νaH̄

[µν]µ′ν′

ba′ Fa′

µ′ν′ ,

H̄
[µν]µ′ν′

aa′ ≡ Â µ
c Â ν

d Â µ′

c′ Â ν′

d′ η̄
[cd]c′d′

aa′ , H̃
[µν]µ′ν′

aa′ ≡ Â µ
c Â ν

d Â µ′

c′ Â ν′

d′ η̃
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:
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a , (159)

where the field strength F̃ µν
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a Â
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Â µ
a )Ĥ
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In the above equations, we have introduced the following definitions:
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:

∂νF̃
µν
a = J µ

a , (159)

where the field strength F̃ µν
a and current J µ

a are defined as follows:
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with the conserved current,

∂µJ
µ
a = 0. (162)

Such equations of motion for gravigauge field are obtained to describe the gravidynamics
and referred to as gauge-type gravitational equations.

B. Gauge-type gravidynamics in locally flat gravigauge spacetime

From the gauge and scaling invariant action built in hidden coordinate formalisms in
Eqs.(80)-(85) and (88), it is seen that all interactions emerge in locally flat gravigauge
spacetime spanned by the gravigauge bases. It should be appropriate to derive the gauge-
type gravitational equation in locally flat gravigauge spacetime. When taking the scaling
gauge fixing condition to be in Einstein basis, we arrive at the following equation of motion:
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J c
b ≡ 16πGN Ĵ
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and the currents J µ
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In the above equations, we have introduced the following definitions:
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c Â ν
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:
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µν
a = J µ

a , (159)

where the field strength F̃ µν
a and current J µ
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E (Ĥµµ′

Â ρ
a −

1

4
Ĥ
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In the above equations, we have introduced the following definitions:
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:

∂νF̃
µν
a = J µ
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where the field strength F̃ µν
a and current J µ
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µ
a ≡ J

µ
a + J̃

µ
a ,

J̃
µ

a = χ̂ ρ
a F

c
ρνF̃

µν
c −

1

4
χ̂ µ
a Fc

ρνF̃
ρν
c ,

J
µ

a = χ{(χ̂ ρ
a χ̂

µ
c − χ̂ µ

a χ̂
ρ

c )(Ψ̄−Σ
c
−iDρΨ− +H.c.)

+ χ̂ µ
a

m

Mκ
φΨ̄−Γ

6Ψ− − (χ̂µµ′

χ̂ ρ
a −

1

4
χ̂ρµ′

χ̂ µ
a )χ̂νν′FρνFµ′ν′},

J̃
µ

a = χ{−(χ̂µµ′

χ̂ ρ
a −

1

4
χ̂ρµ′

χ̂ µ
a )χ̂

νν′F bc
ρνFµ′ν′bc

+
m2

G

M2
κ

φ2(χ̄[µν]µ′ν′

ba′ χ̂ ρ
a −

1

4
χ̄[ρν]µ′ν′

ba′ χ̂ µ
a )(Fb

ρν + Sb
ρν)(F

a′

µ′ν′ + Sa′

µ′ν′)}

−
m2

G

Mκ
Dν

(
χ χ̄[µν]µ′ν′

aa′ φ(Fa′

µ′ν′ + Sa′

µ′ν′)
)
. (157)
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:
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a and current J µ
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ρ
c )(Ψ̄−Σ

c
−iDρΨ− +H.c.)

+ Â µ
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In the above equations, we have introduced the following definitions:
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c Â ν
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Taking the scaling gauge fixing condition to be in Einstein basis, we arrive at the following
gauge-type gravitational equation:
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with the conserved current,

∂µJ
µ
a = 0. (162)

Such equations of motion for gravigauge field are obtained to describe the gravidynamics
and referred to as gauge-type gravitational equations.

B. Gauge-type gravidynamics in locally flat gravigauge spacetime

From the gauge and scaling invariant action built in hidden coordinate formalisms in
Eqs.(80)-(85) and (88), it is seen that all interactions emerge in locally flat gravigauge
spacetime spanned by the gravigauge bases. It should be appropriate to derive the gauge-
type gravitational equation in locally flat gravigauge spacetime. When taking the scaling
gauge fixing condition to be in Einstein basis, we arrive at the following equation of motion:
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for the field strength and covariant derivative, and

J c
b ≡ 16πGN Ĵ
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is highly nonlinear [23, 24], which makes its application
rather di�cult. However, when the gravitational e↵ects
are weak, the gravitational dynamics becomes easy and
tractable, so that we can expand the equations of mo-
tion in terms of perturbations at the linear level. In the
present work, we would like to explore the gravitational
physics in this linearized GQFT. We start by deriving the
linearized gravitational field equations, which are then
applied to two special situations. Firstly, we shall con-
sider the free gravitational equations without any matter
sources, aiming to investigate how many and what phys-
ical polarizations are contained in the propagating GWs.
Next, we turn to the Newtonian limit, in which the grav-
itational field and matter sources are weak and static.
By solving the linearized equations, we can obtain the
well-known Poisson equation which governs the associ-
ated Newtonian potential. We will also make use of both
non-relativistic and relativistic test bodies to probe this
Newtonian configuration. In particular, when the prob-
ing particles are photons, we can constrain the GQFT
with existing experiments, such as the deflection of a light
ray and the Shapiro time delay.

The paper is organized as follows. In Sec. II, we
shall derive the linearized gravitational equations of grav-
igauge fields in the GQFT. We shall apply in Sec. III the
obtained equations to the free field case, and examine the
physical degrees contained in the propagating GWs. In
Sec. IV, we turn to the Newtonian limit, which is tested
by the non-relativistic test bodies and relativistic pho-

tons. Finally, we conclude and comment in Sec. V.

II. GRAVITATIONAL EQUATIONS OF
GRAVIGAUGE FIELD AT THE LINEAR LEVEL

In this section, we linearize the gravitational equations
of gravigauge fields in the GQFT [23]. Our derivation
begins with the gauge-type formulation of the gravidy-
namics given in Eq. (159) of Ref. [23]

@⌫ F̃
µ⌫
a = J µ

a , (1)

where the definition of F̃ µ⌫
a and various contributions to

the source J µ
a are defined in Ref. [23]. Note that the

basic ingredient in the gravidynamics is the gravigauge
field �a

µ, which can always be written as follows:

�a
µ ⌘ ⌘aµ +

1

2
ha

µ , (2)

where ⌘aµ is regarded as the background field while ha
µ

is the redefinition of the field variable �a
µ. If we further

require that ha
µ is a weak perturbation, we can expand

the dual gravigauge field as �̂µ
a = (⌘aµ + 1

2h
a
µ)

�1 and
the determinant � in terms of ha

µ. As a result, the field
strength F a

µ⌫ can be reduced into

F a
µ⌫ = @µ�

a
⌫ � @⌫�

a
µ = (@µh

a
⌫ � @⌫h

a
µ)/2 , (3)

and the leading-order gravitational field equation in the
GQFT is given by

[⇤h ⇢
a � @⇢@⌫h

⌫
a � @⌫@ah

⌫⇢ + @a@
⇢h+ �⇢a(@⌫@�h

⌫�
�⇤h)] + �W (⇤h ⇢

a � @⇢@⌫h
⌫
a ) = �16⇡GJ

⇢
a , (4)

where the �W -independent terms on the left-hand side
(LHS) are derived from the LHS of Eq. (1) while the �W -

dependent part from the term m2
GD⌫

⇣
��̄[µ⌫]µ0⌫0

aa0 Fa0

µ0⌫0

⌘

contained in J µ
a . Here �W ⌘ �G(↵G�↵W /2) with �G and

↵G(W ) defined in Ref. [23]. The current J ⇢
a on the right-

hand side is composed of ordinary matter fields which
sources the gravitational perturbation ha

µ. In Eq. (4) we

have fixed the gauge conditions for the local SP(1, 3) sym-
metry so that hµ

a is a symmetric tensor with hµ
a = hµ

a.
We also have h ⌘ ⌘µah

a
µ and hµ⌫ ⌘ ⌘a⌫⌘µ⇢h

⇢
a . However,

the indices a and µ in Eq. (4) do not possess any sym-
metry property, so that we can decompose this equation
into the symmetric and anti-symmetric parts as follows

eGµ⌫ ⌘
1

2

⇥
⇤hµ⌫ � 2@�@(µh⌫)� + @µ@⌫h+ ⌘µ⌫(@

⇢@�h⇢� �⇤h)
⇤
+

�W
2

[⇤hµ⌫ � @�@(µh⌫)�] = �8⇡GT(µ⌫) , (5)

eG[µ⌫] ⌘ �
�W
2

@�@[µh⌫]� = �8⇡GT[µ⌫] , (6)

where eGµ⌫ represents the generalized Einstein tensor and
the source terms are given by

T(µ⌫) ⌘ (⌘µ⇢⌘
a
⌫ + ⌘⌫⇢⌘

a
µ)J

⇢
a /2 ,

T[µ⌫] ⌘ (⌘µ⇢⌘
a
⌫ � ⌘⌫⇢⌘

a
µ)J

⇢
a /2 , (7)

Eqs. (5) and (6) comprises the complete linearized equa-
tions governing gravitational fields in the GQFT.
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Sec. IV, we turn to the Newtonian limit, which is tested
by the non-relativistic test bodies and relativistic pho-

tons. Finally, we conclude and comment in Sec. V.

II. GRAVITATIONAL EQUATIONS OF
GRAVIGAUGE FIELD AT THE LINEAR LEVEL

In this section, we linearize the gravitational equations
of gravigauge fields in the GQFT [23]. Our derivation
begins with the gauge-type formulation of the gravidy-
namics given in Eq. (159) of Ref. [23]
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where the definition of F̃ µ⌫
a and various contributions to

the source J µ
a are defined in Ref. [23]. Note that the

basic ingredient in the gravidynamics is the gravigauge
field �a

µ, which can always be written as follows:
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is the redefinition of the field variable �a
µ. If we further
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µ is a weak perturbation, we can expand
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and the leading-order gravitational field equation in the
GQFT is given by
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sources the gravitational perturbation ha
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a . However,

the indices a and µ in Eq. (4) do not possess any sym-
metry property, so that we can decompose this equation
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Eqs. (5) and (6) comprises the complete linearized equa-
tions governing gravitational fields in the GQFT.
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III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations

�W
2

⇤A = @t
h
(4� �W ) + �W�+

�W
2
@tA

i
, (19)

⇤ = @j@
j


�W � 1

�W + 1
 + ��

1

2
@tA

�
, (20)

by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)
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III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component
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(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations
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by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
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�W
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k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)
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T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi
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iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component
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• four-dimensional trace
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+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
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by acting one and two spatial derivatives on Eqs. (16)
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where the second equality follows by taking a divergence
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ĥit = ĥtt = 0 , ĥi
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how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations
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h
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i
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⇤ = @j@
j


�W � 1

�W + 1
 + ��

1
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@tA

�
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by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)

3

III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations

�W
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h
(4� �W ) + �W�+

�W
2
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i
, (19)

⇤ = @j@
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
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�
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by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)

l Trace

3

III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations

�W
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h
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�W
2
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i
, (19)

⇤ = @j@
j


�W � 1

�W + 1
 + ��

1

2
@tA

�
, (20)

by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)

l (t,i)

3

III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ 
+2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 , (17)

It is clear that only the gauge-invariant fields appear in
the final equations.
Our next task is to solve these field equations in the

GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations
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2
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i
, (19)

⇤ = @j@
j


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�W + 1
 + ��

1
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@tA

�
, (20)

by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)

l (i,j)
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III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ + 2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 ,

(17)

It is clear that only the gauge-invariant fields appear in
the final equations.

Our next task is to solve these field equations in the
GQFT. We begin with the scalar sector. Eq. (14) implies
the following constraint for  

 = ��W�/2 , (18)

which can be easily seen by transforming Eq. (14) into the
Fourier space with a nonzero wave number. Moreover, we
can obtain the additional independent relations
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2
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i
, (19)

⇤ = @j@
j


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�W + 1
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1
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@tA

�
, (20)

by acting one and two spatial derivatives on Eqs. (16)
and (17), respectively. By solving Eqs. (18), (15), (19)
and (20), we can yield the equation of motion for �

⇤� = 0 , (21)

and the constraint for A:

@tA = �(�W � 2)� . (22)

We now turn to the vector sector containing Fi and
Si. By taking into account Eqs. (21), (18), and (22), all
terms related to scalars are cancelled out in Eqs. (16) and
(17), which results in the following reduced equations

⇤Si +
(�W + 2)

�W
@k@

k(Si � @tFi) = 0 , (23)

⇤Fj �
(�W + 2)

�W
@t(Sj � @tFj) = 0 , (24)

where the second equality follows by taking a divergence
@i on Eq. (17). In order to fully shed light on the vector
dynamics, we also need to consider the anti-symmetric
gravitational equations in Eq. (6), which can be written
in terms of component fields as

• (t, i) component

⇤Si � @j@j(Si � @tFi) = 0 . (25)

• (i, j) component

⇤@[iFj] + @t@[i(S � @tF )j] = 0 , (26)



2024/7/12 @17th Marcel-Grossmann Meeting, Pescara 16

Ø Scalar Sector:
Free Field Equations and Physical GW Degrees

Y.-K. Gao, DH, et al.(2022)

Ø Vector Sector: 

Ø Tensor Sector

3

III. FREE FIELD EQUATIONS AND PHYSICAL
DEGREES OF FREEDOM

As the first application of the general linearized field
equations in the GQFT, this section is devoted to explor-
ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.

First of all, we follow the standard procedure in
Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij

ĥit = ĥtt = 0 , ĥi
i = 0 , @iĥij = 0 , (8)

• Spin-1 vector modes: Si and Fi

htt = 0 , hit = Si , hij = 2@(iFj) , @
iSi = @iFi = 0 ,(9)

• Spin-0 scalar modes: �, B,  and E

htt = �2� , hit = �@iB, hij = �2 �ij + 2@i@jE.(10)

We can conveniently summarize these fields with the fol-
lowing line element

ds2= (1 + 2�)dt2 � 2(Si � @iB)dxidt

� [ĥij � (1� 2 )⌘ij + 2@(iFj) + 2@i@jE]dxidxj ,(11)

with ⌘ij ⌘ ��ij . Furthermore, one can prove that the
field equations in Eqs. (5) and (6) are invariant under the
scalar-type gauge transformation �hµ⌫ = @µ@⌫⇣, which
leads the scalar fields �, B and E to transform as

�! �+ @2t ⇣/2 , B ! B + @t⇣ , E ! E � ⇣/2 .(12)

Therefore, we can define the following two gauge-
invariant variables

� = �� @tB/2 A = B + 2@tE . (13)

With the above polarization fields, the symmetric
equation in Eq. (5) can give us the following indepen-
dent equations

• (t, t) component

2@k@k + �W@k@k� = 0 . (14)

• four-dimensional trace

3⇤ = @i@i ( + �� @tA/2) . (15)

• (t, i) component

⇥
@k@k(Si � @tFi) + 4@t@i 

⇤
+ (�W /2) [⇤Si �⇤@iA

+ @k@k(Si � @tFi) + 2@i@t(��  + @tA/2)
⇤
= 0 . (16)

• (i, j) component

(1 + �W )⇤ĥij + �W⇤@(iFj) � (�W + 2)@t@(i[S � @tF ]j)
+2⌘ij(�W + 1)⇤ + 2@i@j [(1� �W ) � �+ (�W + 1)@tA/2] = 0 ,

(17)

It is clear that only the gauge-invariant fields appear in
the final equations.

Our next task is to solve these field equations in the
GQFT. We begin with the scalar sector. Eq. (14) implies
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As the first application of the general linearized field
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ing the free equations in the absence of matter sources
T(µ⌫) = 0 and T[µ⌫] = 0, paying attention to the question
how many GW degrees of freedom (dofs) are propagating
in this theory.
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Refs. [26–28] to decompose hµ⌫ into the following po-
larization modes:

• Spin-2 tensor modes: ĥij
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Five GW Degrees: 
Two Tensor + Two Vector + One Scalar
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4

where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Ø Newton Constant:

4

where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Ø Solution: Poisson Equation
+ Constraint: 

4

where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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4

where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Ø The probing object moves very slowly, i.e., 
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Universal 
Acceleration!

The GQFT obeys the 
Weak Equivalence Principle



2024/7/12 @17th Marcel-Grossmann Meeting, Pescara 19

Ø Detecting the Newtonian Limit with Photons, which would follow 
the light-like geodesics in the following metric 

Newtonian Limit

Y.-K. Gao, DH, et al.(2022)

Ø In the Solar system, these potentials can be written as

4

where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

Ø Following C.M. Will (2018), we can derive
l Deflection angle: 
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where scalars are cancelled out totally due to their dy-
namics. By solving Eqs. (23)-(26), one can show for
�W 6= �1

⇤Fi = 0 , (27)

with the constraint

Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,

eG0i = �@k@
k [(1 + �W )Si � �W@iA/2] /2 = 0 , (30)

eGij = �(1/2){(1 + �W )@k@
kĥij + �W@k@k@(iFj)

�2@i@j [(�W � 1) + �]� 2⌘ij@k@
k[(1� �W ) � �]} = 0 .

By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation

4� ⌘ �@k@
k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows

GN ⌘
1� �W

(1� �W /2)(1 + �W )
G . (33)

One can probe this Newtonian field configuration with
either non-relativistic test bodies or relativistic particles
like photons. At low-energy limit of the GQFT, all these
objects propagate along the geodesics described by:

d2x⇢

d⌧2
+ �⇢

µ⌫
dxµ

d⌧

dx⌫

d⌧
= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,

l Shapiro Time Delay:  
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⇤Fi = 0 , (27)
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Si = @tFi . (28)

Finally, by considering the relations in the scalar and
vector sectors, Eq. (17) gives us

⇤ĥij = 0 , (29)

which is the wave equation for the two massless tensor
dofs like in the GR.

In summary, for a generic value of �W 6= 0 or �1,
we have found five massless propagating GW dofs in the
GQFT: two tensor modes ĥij , two vector modes Fi, and
one scalar �, which can determine the dynamics of other
component fields defined in Eq. (11) via various relations.

IV. NEWTONIAN LIMITS

Let us now apply the linearized gravitational equa-
tions in the GQFT to explore the gravitational fields in
the Newtonian limit. As is well known, the Newtonian
limit [29, 30] is the situation in which the gravitational
field is static and weak. Thus, in the following, all of
the time derivatives in the linearized gravitational field
equations can be ignored. Also, the matter is composed
of dust and the configuration is static, so that the only
nonzero component of the energy momentum tensor is
only T(00) = ⇢(x), where the mass density ⇢ is assumed to
be a function of spatial coordinates x. The antisymmetric
energy-momentum tensor T[µ⌫] vanishes by assumption.
Thus, the modified Einstein equations are given by

eG00 = @i@
i(2 + ��) = �8⇡G⇢(x) ,
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By solving these equations, the Newtonian potential � is
shown to obey the conventional Poisson equation
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k� = 4⇡GN⇢(x) , (31)

with the scalar  determined by

 = �/(1� �W ) , (32)

while other fields ĥij , Si, Fi and A all vanish identically,
where we have defined the measured Newtonian constant
in terms of the fundamental coupling G [29, 30] as fol-
lows
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G . (33)

One can probe this Newtonian field configuration with
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objects propagate along the geodesics described by:
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= 0 , (34)

where �⇢
µ⌫ is the usual Christo↵el symbol defined with

respect to the e↵ective metric in Eq. (11).
If the probing object is massive and moves very slowly,

i.e., dxi/d⌧ ⌧ dt/d⌧ , the geodesic equation in Eq. (34)
dictates the object to follow the path

d2xi

dt2
= @i�(x) = �@i�(x) . (35)

which is nothing but the acceleration of a massive body
moving in the static Newtonian potential. Furthermore,
Eq. (35) also implies that, regardless of the value of
its mass, the test body would always experience the
same acceleration and propagate with the same trajec-
tory in this weak gravitational field configuration, which
has been well tested by the experiments examining the
Weak Equivalence Principle (WEP). Note that the best
constraints on the WEP are provided by the Eöt-Wash
group [31, 32] and MICROSCOPE [33].
On the other hand, the gravitational field profile in

the Newtonian limit can be detected by photons, which
can lead to the gravitational light deflection [6–9], the
Shapiro time delay [11, 12] and the gravitational red-
shift [3–5] of photon frequencies. Note that these phe-
nomena provide three of the most important tests of the
GR in the history (see e.g. Refs. [13, 30] for recent re-
views and references therein). In what follows, we shall
compute the relevant observables in the GQFT and use
the current data to constrain the parameter �W .
Since most observations for gravitational light deflec-

tions and time delays have been performed in the Solar
system, we shall work in the following e↵ective metric:

ds2 = (1 + 2�)dt2 � (1� 2 )�ijdx
idxj , (36)

where all other gravitational component fields vanish in
the Newtonian limit according to previous discussions.
Here we have chosen the gauge with E = 0, so that � =
�, where �(x) is the gauge-invariant Newtonian potential
in the Solar system represented by

� = �GNM�/r , (37)

with M� denoting the solar mass and r as the radial
distance from the Sun. Following the methods presented
in Refs. [30, 34], we can derive, as illustrated in Fig. 1, the
expressions for the deflection angle �✓ and the Shapiro
time delay �tShapiro as follows

�✓ ⇡ (2 + �W ) (GNM�/b) (1 + cos ✓0) , (38)

�tShapiro ⇡ 2(2 + �W )GNM� ln
�
4rers/b

2
�
, (39)

where ✓0 is the elongation angle of the emitter relative to
the Sun, b is the closest approach from the Solar barycen-
tric point to the line connecting the source and the Earth,
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FIG. 1. An illustration of the light ray deflection with the deflection angle �✓ and the Shapiro time delay �tShapiro caused by
the Newtonian field of a massive object, such as the Sun.

and re(s) is the radial distance of the Earth (source) from
the Sun. Comparing with the well-known formulas in the
parametrized post-Newtonian (PPN) formalism [13, 30],
it is seen that �W is closely related to the PPN parameter
� by �W ⇡ � � 1.

Recent tremendous developments in the very-long-
baseline radio interferometry (VLBI) and the radar time-
delay experiments enable us to put strong constraints on
the GQFT. In particular, the VLBI observations of the
deflection angles of lights from quasars and radio galaxies
have yielded �W = (�0.8±1.2)⇥10�4 at the 1� CL [8, 9],
while the most precise measurement of the Shapiro time
delay is provided by the Cassini spacecraft [12], which has
given the best limit to date on �W = (2.1± 2.3)⇥ 10�5.

Finally, we would like to discuss the gravitational red-
shift of photons [3–5] in the GQFT. Based on the argu-
ments given in Ref. [29], we can derive the ratio of the
photon frequencies !(x) at di↵erent locations x1 and x2:

!(x2)

!(x1)
=

✓
1 + 2�(x1)

1 + 2�(x2)

◆1/2

⇡ 1 + �(x1)� �(x2) ,(40)

where we have expanded the expression for �(x) ⌧ 1.
Note that the photon frequency modification only de-
pends on the Newtonian potential �(x), without any ref-
erence to  , so that the gravitational redshift e↵ect in
the GQFT should be the same as in the GR.

V. CONCLUSION AND DISCUSSION

Understanding the nature of gravity and its quantiza-
tion is one of main goals in the modern physics. Un-
like the Einstein’s GR which was based on the Riemann
geometry, the GQFT [23] has constructed the gravita-
tional interaction based on the gauge principle that has
been well-tested by other three fundamental interactions.
In the present work, we have explored the fundamental
physics and phenomenology in the weak gravity limit of
the GQFT, so that the theory can be examined at the
linear level of the perturbation hµ⌫ . In order to realize
this aim, we have derived the linearized gravitational field
equations in the GQFT. It is found that, di↵erent from
the usual di↵eomorphism symmetry in the GR, the gauge
symmetry in this theory is reduced to a scalar-type one
parametrized by the infinitesimal gauge parameter ⇣(x).

Moreover, the di↵erence between the GQFT and the GR
at the linearized level can be parametrized by one single
parameter �W .

After establishing this linearized theory, we then ap-
ply this formalism to two special situations of important
physical interest. In the first application, we examine
the free linearized gravitational field equations in the ab-
sence of any matter fields. In particular, we focus on one
crucial question: how many and what physical propagat-
ing GW dofs are contained in this theory? As a result,
di↵erent from the GR which includes only two massless
tensor modes, there are five physical polarizations: two
tensor modes, two vector modes and one scalar mode, all
of which are massless.

In the second application, we turn to the Newtonian
limit in which the gravitational field is weak and the mat-
ter source fields are static. By solving the obtained field
equations, we can obtain the conventional Poisson equa-
tion which connects the Newtonian potential with the
matter density distribution. As a byproduct, we have
obtained the exact relationship between the fundamen-
tal coupling G defined in the GQFT and the experi-
mentally measured Newtonian constant GN . We then
make use of the non-relativistic objects and photons to
probe the yielded gravitational field configuration. For a
slowly-moving object, regardless of the value of its mass,
it would always experience the same acceleration and fol-
low the same trajectory in the gravitational field, which
has been well tested by the experiments examining the
WEP. Finally, we consider the motion of a photon in
this Newtonian background, and investigate three clas-
sical tests: (i) the deflection of light, (ii) the time delay
of light, and (iii) the gravitational redshift,. It turns
out that the GQFT gives exactly the same prediction
of the gravitational redshift e↵ect as in the GR, so that
this kind of experiments cannot be used to distinguish
these two theories. On the other hand, the light deflec-
tion and the Shapiro time delay do predict di↵erently in
the GQFT than in the GR, due to the dependence of
the parameter �W . Thus, we can probe and constrain
the GQFT with the associated experiments. In particu-
lar, the radar time-delay experiment carried out at the
Cassini spacecraft provided the most stringent bound on
�W . O(10�5).

Besides the phenomena investigated in the present

l Cassini spacecraft (radar):  
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FIG. 1. An illustration of the light ray deflection with the deflection angle �✓ and the Shapiro time delay �tShapiro caused by
the Newtonian field of a massive object, such as the Sun.

and re(s) is the radial distance of the Earth (source) from
the Sun. Comparing with the well-known formulas in the
parametrized post-Newtonian (PPN) formalism [13, 30],
it is seen that �W is closely related to the PPN parameter
� by �W ⇡ � � 1.

Recent tremendous developments in the very-long-
baseline radio interferometry (VLBI) and the radar time-
delay experiments enable us to put strong constraints on
the GQFT. In particular, the VLBI observations of the
deflection angles of lights from quasars and radio galaxies
have yielded �W = (�0.8±1.2)⇥10�4 at the 1� CL [8, 9],
while the most precise measurement of the Shapiro time
delay is provided by the Cassini spacecraft [12], which has
given the best limit to date on �W = (2.1± 2.3)⇥ 10�5.

Finally, we would like to discuss the gravitational red-
shift of photons [3–5] in the GQFT. Based on the argu-
ments given in Ref. [29], we can derive the ratio of the
photon frequencies !(x) at di↵erent locations x1 and x2:

!(x2)

!(x1)
=

✓
1 + 2�(x1)

1 + 2�(x2)

◆1/2

⇡ 1 + �(x1)� �(x2) ,(40)

where we have expanded the expression for �(x) ⌧ 1.
Note that the photon frequency modification only de-
pends on the Newtonian potential �(x), without any ref-
erence to  , so that the gravitational redshift e↵ect in
the GQFT should be the same as in the GR.

V. CONCLUSION AND DISCUSSION

Understanding the nature of gravity and its quantiza-
tion is one of main goals in the modern physics. Un-
like the Einstein’s GR which was based on the Riemann
geometry, the GQFT [23] has constructed the gravita-
tional interaction based on the gauge principle that has
been well-tested by other three fundamental interactions.
In the present work, we have explored the fundamental
physics and phenomenology in the weak gravity limit of
the GQFT, so that the theory can be examined at the
linear level of the perturbation hµ⌫ . In order to realize
this aim, we have derived the linearized gravitational field
equations in the GQFT. It is found that, di↵erent from
the usual di↵eomorphism symmetry in the GR, the gauge
symmetry in this theory is reduced to a scalar-type one
parametrized by the infinitesimal gauge parameter ⇣(x).

Moreover, the di↵erence between the GQFT and the GR
at the linearized level can be parametrized by one single
parameter �W .

After establishing this linearized theory, we then ap-
ply this formalism to two special situations of important
physical interest. In the first application, we examine
the free linearized gravitational field equations in the ab-
sence of any matter fields. In particular, we focus on one
crucial question: how many and what physical propagat-
ing GW dofs are contained in this theory? As a result,
di↵erent from the GR which includes only two massless
tensor modes, there are five physical polarizations: two
tensor modes, two vector modes and one scalar mode, all
of which are massless.

In the second application, we turn to the Newtonian
limit in which the gravitational field is weak and the mat-
ter source fields are static. By solving the obtained field
equations, we can obtain the conventional Poisson equa-
tion which connects the Newtonian potential with the
matter density distribution. As a byproduct, we have
obtained the exact relationship between the fundamen-
tal coupling G defined in the GQFT and the experi-
mentally measured Newtonian constant GN . We then
make use of the non-relativistic objects and photons to
probe the yielded gravitational field configuration. For a
slowly-moving object, regardless of the value of its mass,
it would always experience the same acceleration and fol-
low the same trajectory in the gravitational field, which
has been well tested by the experiments examining the
WEP. Finally, we consider the motion of a photon in
this Newtonian background, and investigate three clas-
sical tests: (i) the deflection of light, (ii) the time delay
of light, and (iii) the gravitational redshift,. It turns
out that the GQFT gives exactly the same prediction
of the gravitational redshift e↵ect as in the GR, so that
this kind of experiments cannot be used to distinguish
these two theories. On the other hand, the light deflec-
tion and the Shapiro time delay do predict di↵erently in
the GQFT than in the GR, due to the dependence of
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FIG. 1. An illustration of the light ray deflection with the deflection angle �✓ and the Shapiro time delay �tShapiro caused by
the Newtonian field of a massive object, such as the Sun.
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the Sun. Comparing with the well-known formulas in the
parametrized post-Newtonian (PPN) formalism [13, 30],
it is seen that �W is closely related to the PPN parameter
� by �W ⇡ � � 1.

Recent tremendous developments in the very-long-
baseline radio interferometry (VLBI) and the radar time-
delay experiments enable us to put strong constraints on
the GQFT. In particular, the VLBI observations of the
deflection angles of lights from quasars and radio galaxies
have yielded �W = (�0.8±1.2)⇥10�4 at the 1� CL [8, 9],
while the most precise measurement of the Shapiro time
delay is provided by the Cassini spacecraft [12], which has
given the best limit to date on �W = (2.1± 2.3)⇥ 10�5.

Finally, we would like to discuss the gravitational red-
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ments given in Ref. [29], we can derive the ratio of the
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the GQFT should be the same as in the GR.
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parameter �W .
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crucial question: how many and what physical propagat-
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di↵erent from the GR which includes only two massless
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ter source fields are static. By solving the obtained field
equations, we can obtain the conventional Poisson equa-
tion which connects the Newtonian potential with the
matter density distribution. As a byproduct, we have
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tal coupling G defined in the GQFT and the experi-
mentally measured Newtonian constant GN . We then
make use of the non-relativistic objects and photons to
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slowly-moving object, regardless of the value of its mass,
it would always experience the same acceleration and fol-
low the same trajectory in the gravitational field, which
has been well tested by the experiments examining the
WEP. Finally, we consider the motion of a photon in
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sical tests: (i) the deflection of light, (ii) the time delay
of light, and (iii) the gravitational redshift,. It turns
out that the GQFT gives exactly the same prediction
of the gravitational redshift e↵ect as in the GR, so that
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tion and the Shapiro time delay do predict di↵erently in
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Ø Motivated by the difficulty of quantizing gravity, the GQFT has been 
proposed based on the gauge principle.

Ø We have studied linearized gravitational dynamics in the GQFT;
Ø We found five propagating GW dofs, with 2 tensors, 2 vectors and 1 scalar; 
Ø We also studied the Newtonian limit of this theory, found the dynamics 

modified by a single parameter 𝛾W.  
Ø We can probe Newtonian theory with non-relativistic objects, which are 

found to obey the Weak Equivalence Principle;
Ø For photons, we have derived GQFT corrected formulas for the light 

deflection angle and Shapiro time delay. When compared with 
experimental data, 𝛾W has been well constrained.

Conclusions
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Ø Another test of GQFT is provided by the gravitational redshift of photons;

Ø Ratio of Photon frequencies at different locations

Newtonian Limit
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FIG. 1. An illustration of the light ray deflection with the deflection angle �✓ and the Shapiro time delay �tShapiro caused by
the Newtonian field of a massive object, such as the Sun.

and re(s) is the radial distance of the Earth (source) from
the Sun. Comparing with the well-known formulas in the
parametrized post-Newtonian (PPN) formalism [13, 30],
it is seen that �W is closely related to the PPN parameter
� by �W ⇡ � � 1.

Recent tremendous developments in the very-long-
baseline radio interferometry (VLBI) and the radar time-
delay experiments enable us to put strong constraints on
the GQFT. In particular, the VLBI observations of the
deflection angles of lights from quasars and radio galaxies
have yielded �W = (�0.8±1.2)⇥10�4 at the 1� CL [8, 9],
while the most precise measurement of the Shapiro time
delay is provided by the Cassini spacecraft [12], which has
given the best limit to date on �W = (2.1± 2.3)⇥ 10�5.

Finally, we would like to discuss the gravitational red-
shift of photons [3–5] in the GQFT. Based on the argu-
ments given in Ref. [29], we can derive the ratio of the
photon frequencies !(x) at di↵erent locations x1 and x2:
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where we have expanded the expression for �(x) ⌧ 1.
Note that the photon frequency modification only de-
pends on the Newtonian potential �(x), without any ref-
erence to  , so that the gravitational redshift e↵ect in
the GQFT should be the same as in the GR.

V. CONCLUSION AND DISCUSSION

Understanding the nature of gravity and its quantiza-
tion is one of main goals in the modern physics. Un-
like the Einstein’s GR which was based on the Riemann
geometry, the GQFT [23] has constructed the gravita-
tional interaction based on the gauge principle that has
been well-tested by other three fundamental interactions.
In the present work, we have explored the fundamental
physics and phenomenology in the weak gravity limit of
the GQFT, so that the theory can be examined at the
linear level of the perturbation hµ⌫ . In order to realize
this aim, we have derived the linearized gravitational field
equations in the GQFT. It is found that, di↵erent from
the usual di↵eomorphism symmetry in the GR, the gauge
symmetry in this theory is reduced to a scalar-type one
parametrized by the infinitesimal gauge parameter ⇣(x).

Moreover, the di↵erence between the GQFT and the GR
at the linearized level can be parametrized by one single
parameter �W .

After establishing this linearized theory, we then ap-
ply this formalism to two special situations of important
physical interest. In the first application, we examine
the free linearized gravitational field equations in the ab-
sence of any matter fields. In particular, we focus on one
crucial question: how many and what physical propagat-
ing GW dofs are contained in this theory? As a result,
di↵erent from the GR which includes only two massless
tensor modes, there are five physical polarizations: two
tensor modes, two vector modes and one scalar mode, all
of which are massless.

In the second application, we turn to the Newtonian
limit in which the gravitational field is weak and the mat-
ter source fields are static. By solving the obtained field
equations, we can obtain the conventional Poisson equa-
tion which connects the Newtonian potential with the
matter density distribution. As a byproduct, we have
obtained the exact relationship between the fundamen-
tal coupling G defined in the GQFT and the experi-
mentally measured Newtonian constant GN . We then
make use of the non-relativistic objects and photons to
probe the yielded gravitational field configuration. For a
slowly-moving object, regardless of the value of its mass,
it would always experience the same acceleration and fol-
low the same trajectory in the gravitational field, which
has been well tested by the experiments examining the
WEP. Finally, we consider the motion of a photon in
this Newtonian background, and investigate three clas-
sical tests: (i) the deflection of light, (ii) the time delay
of light, and (iii) the gravitational redshift,. It turns
out that the GQFT gives exactly the same prediction
of the gravitational redshift e↵ect as in the GR, so that
this kind of experiments cannot be used to distinguish
these two theories. On the other hand, the light deflec-
tion and the Shapiro time delay do predict di↵erently in
the GQFT than in the GR, due to the dependence of
the parameter �W . Thus, we can probe and constrain
the GQFT with the associated experiments. In particu-
lar, the radar time-delay experiment carried out at the
Cassini spacecraft provided the most stringent bound on
�W . O(10�5).

Besides the phenomena investigated in the present

Ø This formula is the same as in GR, so 
that gravitational redshift CANNOT be 
used to distinguish GQFT from GR.


