Linear Dynamics and Gravitational Waves in Gravitational Quantum Field Theory

Da Huang

National Astronomical Observatories, Chinese Academy of Sciences

Yuan-Kun Gao, DH, Yong-Liang Ma, Yu-Feng Zhou \& Yue-Liang Wu,

arXiv: 2403.17619

Content

> Introduction and Motivation
> Brief Introduction to GQFT
> Linearized Gravitational Equations
> Gravitational Wave Degrees of Freedom
> Newtonian Limits and Experimental Tests
> Conclusions

Introduction

> Among four fundamental interactions, gravity is the weakest and most mysterious.
> It governs the evolutions of most astrophysical systems and even the whole Universe.

$>$ Currently the standard theory of gravity is Einstein's General Relativity.

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

Introduction

$>$ GR has passed all astrophysical and cosmological tests:

Grav. Redshift

Mer. Perihelion

Time Delay

Introduction

> Hulse-Taylor binary pulsar B1913+16: Indirect Evidence of GWs

> GW150914 by LIGO: Direct Discovery of GWs

Introduction

> Hulse-Taylor binary pulsar B1913+16: Indirect Evidence of GWs

Motivation

$>$ Despite its success, GR can be a low-energy effective field theory as indicated by its non-renormalizability.
> Important Questions:
\checkmark What is the nature of gravity?
\checkmark How to quantize gravity?
$>$ Hints:
\checkmark As inspired by electromagnetic, weak and strong interactions, we should formulate gravity with gauge principle.
\checkmark Many attempts: Einstein-Cartan, Teleparallel Equivalent GR, ..

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

$>$ GQFT is a new gauge formulation of gravity, in which the gauge fields and transformations are represented wrt fermions.
> New formulation of 4-dimensional Dirac fermions

$$
S_{D}=\int d^{4} x \frac{1}{2}\left(\bar{\psi}(x) \gamma^{\mu} i \partial_{\mu} \psi(x)+H . c .\right)-m \bar{\psi}(x) \psi(x),
$$

$S=\int d^{4} x \frac{1}{2}\left\{\bar{\Psi}_{-}(x) \Gamma^{a} \Gamma_{-} \delta_{a}{ }^{\mu}{ }^{2} D_{\mu} \Psi_{-}(x)-\bar{\Psi}_{-}(x)\left(m_{5} \Gamma^{5} \Gamma_{-}+m_{6} \Gamma^{6} \Gamma_{-}\right) \Psi_{-}(x)+H . c.\right\}$,

$$
\Psi_{-}(x)=\Gamma_{-} \Psi(x) \equiv\binom{\psi_{L}(x)}{\psi_{R}(x)}, \quad \Gamma^{5}=i \sigma_{1} \otimes \gamma_{5}, \quad \Gamma^{6}=i \sigma_{2} \otimes \gamma_{5},
$$

where

$$
\begin{aligned}
& \psi_{L, R}(x)=\gamma_{\mp} \psi(x), \\
& \Gamma_{\mp}=\frac{1}{2}\left(1 \mp \hat{\gamma}_{7}\right), \quad \gamma_{\mp}=\frac{1}{2}\left(1 \mp \gamma_{5}\right), \\
& \Gamma^{a}=\sigma_{0} \otimes \gamma^{a}, \quad \gamma^{a}=\delta_{\mu}^{a} \gamma^{\mu}, \\
& \text { elth tharcell Gossmar }
\end{aligned}
$$

$$
\Gamma^{\hat{a}} \equiv 2\left(\Sigma_{-}^{\hat{a}}+\Sigma_{+}^{\hat{a}}\right), \quad \Sigma_{\mp}^{\hat{a}} \equiv \frac{1}{2} \Gamma^{\hat{a}} \Gamma_{\mp},
$$

$$
\gamma_{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\sigma_{3} \otimes \sigma_{0},
$$

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

> Gauge Transformation Generators

$$
\begin{aligned}
& \Sigma^{a b}=\frac{i}{4}\left[\Gamma^{a}, \Gamma^{b}\right], \\
& \Sigma_{-}^{a}=\frac{1}{2} \Gamma^{a} \Gamma_{-}, \quad \Gamma_{-}=\frac{1}{2}\left(1-\hat{\gamma}_{7}\right),
\end{aligned}
$$

> Commutators

$$
\begin{aligned}
& {\left[\Sigma^{a b}, \Sigma^{c d}\right]=i\left(\Sigma^{a d} \eta^{b c}-\Sigma^{b d} \eta^{a c}-\Sigma^{a c} \eta^{b d}+\Sigma^{b c} \eta^{a d}\right)} \\
& {\left[\Sigma^{a b}, \Sigma_{-}^{c}\right]=i\left(\Sigma_{-}^{a} \eta^{b c}-\Sigma_{-}^{b} \eta^{a c}\right)} \\
& {\left[\Sigma_{-}^{a}, \Sigma_{-}^{b}\right]=0}
\end{aligned}
$$

$W S(1,3) \equiv S P(1,3) \rtimes W^{1,3}$. Isometric to Poincare Group

Brief Introduction to Gravitational Quantum Field Theory (GQFI)

> Inhomogeneous Spin Gauge Symmetry
\checkmark Covariant derivative: $i \partial_{\mu} \rightarrow i \hat{\mathcal{D}}_{\mu} \equiv i \partial_{\mu}+\hat{\mathcal{A}}_{\mu}(x)$
\checkmark Gauge Fields:

$$
\begin{aligned}
\hat{\mathcal{A}}_{\mu}(x) & \equiv \mathcal{A}_{\mu}(x)+\check{\mathcal{A}}_{\mu}(x) \\
\mathcal{A}_{\mu}(x) & \equiv \mathcal{A}_{\mu}^{a b}(x) \frac{1}{2} \Sigma_{a b}, \quad \check{\mathcal{A}}_{\mu}(x) \equiv \mathcal{A}_{\mu}^{a}(x) \frac{1}{2} \Sigma_{-a}
\end{aligned}
$$

\checkmark Field Strengths

$$
\begin{aligned}
\hat{\mathcal{F}}_{\mu \nu} & \equiv i\left[\hat{\mathcal{D}}_{\mu}, \hat{\mathcal{D}}_{\nu}\right]=\mathcal{F}_{\mu \nu}+\check{\mathcal{F}}_{\mu \nu}+F_{\mu \nu}, \\
\mathcal{F}_{\mu \nu} & \equiv \mathcal{F}_{\mu \nu}^{a b}(x) \frac{1}{2} \Sigma_{a b}=\partial_{\mu} \mathcal{A}_{\nu}(x)-\partial_{\nu} \mathcal{A}_{\mu}(x)-i\left[\mathcal{A}_{\mu}(x), \mathcal{A}_{\nu}(x)\right], \\
\check{\mathcal{F}}_{\mu \nu} & \equiv \mathcal{F}_{\mu \nu}^{a}(x) \frac{1}{2} \Sigma_{-a}=\mathcal{D}_{\mu} \check{\mathcal{A}}_{\nu}(x)-\mathcal{D}_{\nu} \check{\mathcal{A}}_{\mu}(x) \\
& \equiv \partial_{\mu} \check{\mathcal{A}}_{\nu}(x)-\partial_{\nu} \check{\mathcal{A}}_{\mu}(x)-i\left(\mathcal{A}_{\mu}(x) \check{\mathcal{A}}_{\nu}(x)-\mathcal{A}_{\nu}(x) \check{\mathcal{A}}_{\mu}(x)\right),
\end{aligned}
$$

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

$>$ Identity:

$$
\begin{aligned}
& \mathcal{F}_{\mu \nu}^{a b}(x) \equiv \underbrace{\mathbf{R}_{\mu \nu}^{a b}(x)}_{\mu \nu}+\underbrace{\mathbf{F}_{\mu \nu}^{a b}(x),}_{\text {Riemann Tensor }} \quad \text { Spin Gauge Field }
\end{aligned}
$$

Y.-L. Wu(2022)
> Lagrangian

$$
\begin{aligned}
\mathcal{S}_{D} & \equiv \int\left[d^{4} x\right] \chi(x)\left\{\left(\hat{\chi}^{\mu \nu} \bar{\Psi}_{-} \Sigma_{-}^{a} \chi_{\mu a} i \mathcal{D}_{\nu} \Psi_{-}-m \bar{\Psi}_{-} \Gamma^{6} \Psi_{-}+H . c .\right)\right. \\
& -\frac{1}{4} \hat{\chi}^{\mu \mu^{\prime}} \hat{\chi}^{\nu \nu^{\prime}} F_{\mu \nu} F_{\mu^{\prime} \nu^{\prime}}-\frac{1}{4} \hat{\chi}^{\mu \mu^{\prime}} \hat{\chi}^{\nu \nu^{\prime}} \mathcal{F}_{\mu \nu}^{a b} \mathcal{F}_{\mu^{\prime} \nu^{\prime} a b} \\
& \left.+\frac{1}{4} m_{G}^{2} \bar{\chi}_{a a^{\prime}}^{\mu \nu \mu^{\prime} \nu^{\prime}} \mathbf{F}_{\mu \nu}^{a} \mathbf{F}_{\mu^{\prime} \nu^{\prime}}^{a^{\prime}}+\frac{1}{4} g_{G}^{-2} M_{\kappa}^{2} \tilde{\chi}_{a a^{\prime}}^{\mu \nu \mu^{\prime} \nu^{\prime}} F_{\mu \nu}^{a} F_{\mu^{\prime} \nu^{\prime}}^{a^{\prime}}\right\},
\end{aligned}
$$

> Note

$$
\frac{1}{4} \chi \tilde{\chi}_{a a^{\prime}}^{\mu \nu \mu^{\prime} \nu^{\prime}} F_{\mu \nu}^{a} F_{\mu^{\prime} \nu^{\prime}}^{a^{\prime}}=\chi R+2 \partial_{\mu}\left(\chi \hat{\chi}^{\mu \rho} \hat{\chi}_{a}^{\sigma} F_{\sigma \rho}^{a}\right)
$$

Unify Geometry and Gauge Field

Brief Introduction to Gravitational Quantum Field Theory (GQFT)

Gravitational Equations

$$
\partial_{\nu} \tilde{F}_{a}^{\mu \nu}=J_{a}^{\mu}
$$

$$
\partial_{\mu} J_{a}^{\mu}=0
$$

$$
\tilde{F}_{a}^{\mu \nu} \equiv \chi \tilde{\chi}_{a a^{\prime}}^{[\mu \nu] \mu^{\prime} \nu^{\prime}} F_{\mu^{\prime} \nu^{\prime}}^{a^{\prime}}
$$

$$
J_{a}^{\mu} \equiv 16 \pi G_{N} \hat{J}_{a}{ }^{\mu}+\tilde{J}_{a}{ }^{\mu}, \quad \hat{J}_{a}{ }^{\mu} \equiv \mathrm{J}_{a}{ }^{\mu}+\widetilde{J}_{a}{ }^{\mu}
$$

$$
\tilde{J}_{a}{ }^{\mu}=\hat{\chi}_{a}^{\rho} F_{\rho \nu}^{c} \tilde{F}_{c}^{\mu \nu}-\frac{1}{4} \hat{\chi}_{a}^{\mu} F_{\rho \nu}^{c} \tilde{F}_{c}^{\rho \nu},
$$

$$
\bar{\chi}_{a a^{\prime}}^{[\mu \nu] \mu^{\prime} \nu^{\prime}} \equiv \hat{\chi}_{c}^{{ }^{\mu}} \hat{\chi}_{d}^{\nu} \hat{\chi}_{c^{\prime}}^{\mu^{\prime}} \hat{\chi}_{d^{\prime}}^{\nu^{\prime}} \bar{\eta}_{a a^{\prime}}^{[c]]^{\prime} d^{\prime}}
$$

$$
\mathrm{J}_{a}{ }^{\mu}=\chi\left\{\left(\hat{\chi}_{a}{ }^{\rho} \hat{\chi}_{c}{ }^{\mu}-\hat{\chi}_{a}{ }^{\mu} \hat{\chi}_{c}^{\rho}\right) \frac{1}{2}\left(\bar{\psi} \gamma^{c} i \mathcal{D}_{\rho} \psi+\text { H.c. }\right)\right.
$$

$$
\tilde{\chi}_{a a^{\prime}}^{[\mu \nu] \mu^{\prime} \nu^{\prime}} \equiv \hat{\chi}_{c}^{\mu} \hat{\chi}_{d}^{\nu} \hat{\chi}_{c^{\prime}}^{\mu^{\prime}} \hat{\chi}_{d^{\prime}}^{\nu^{\prime}} \tilde{\eta}_{a a^{\prime}}^{[c d] c^{\prime} d^{\prime}},
$$

$$
\left.+\hat{\chi}_{a}{ }^{\mu} m \bar{\psi} \psi-\left(\hat{\chi}^{\mu \mu^{\prime}} \hat{\chi}_{a}{ }^{\rho}-\frac{1}{4} \hat{\chi}^{\rho \mu^{\prime}} \hat{\chi}_{a}{ }^{\mu}\right) \hat{\chi}^{\nu \nu^{\prime}} F_{\rho \nu} F_{\mu^{\prime} \nu^{\prime}}\right\},
$$

$$
\bar{\eta}_{a a^{\prime}}^{[c d] c^{\prime} d^{\prime}} \equiv \frac{1}{2}\left(\bar{\eta}_{a a^{\prime}}^{c d c^{\prime} d^{\prime}}-\bar{\eta}_{a a^{\prime}}^{d c c^{\prime} d^{\prime}}\right), \quad \widetilde{J}_{a}{ }^{\mu}=\chi\left\{-\left(\hat{\chi}^{\mu \mu^{\prime}} \hat{\chi}_{a}^{\rho}-\frac{1}{4} \hat{\chi}^{\rho \mu^{\prime}} \hat{\chi}_{a}^{\mu}\right) \hat{\chi}^{\nu \nu^{\prime}} \mathcal{F}_{\rho \nu}^{b c} \mathcal{F}_{\mu^{\prime} \nu^{\prime} b c}\right.
$$

$$
\tilde{\eta}_{a a^{\prime}}^{[c d] c^{\prime} d^{\prime}} \equiv \frac{1}{2}\left(\tilde{\eta}_{a a^{\prime}}^{c d c^{\prime} d^{\prime}}-\tilde{\eta}_{a a^{\prime}}^{d c c^{\prime} d^{\prime}}\right)
$$

$$
\left.+m_{G}^{2}\left(\bar{\chi}_{b a^{\prime}}^{[\mu \nu] \mu^{\prime} \nu^{\prime}} \hat{\chi}_{a}^{\rho}-\frac{1}{4} \bar{\chi}_{b a^{\prime}}^{[\rho \nu] \mu^{\prime} \nu^{\prime}} \hat{\chi}_{a}^{\mu}\right) \mathbf{F}_{\rho \nu}^{b} \mathbf{F}_{\mu^{\prime} \nu^{\prime}}^{a^{\prime}}\right\}
$$

$$
-m_{G}^{2} \mathcal{D}_{\nu}\left(\chi \bar{\chi}_{a a^{\prime}}^{[\mu \nu] \mu^{\prime} \nu^{\prime}} \mathbf{F}_{\mu^{\prime} \nu^{\prime} \nu^{\prime}}^{a^{\prime}},\right.
$$

> Write

$$
\chi_{\mu}^{a} \equiv \eta_{\mu}^{a}+\frac{1}{2} h_{\mu}^{a},
$$

> Linearized Equations with h as perturbations
$\left[\square h_{a}^{\rho}-\partial^{\rho} \partial_{\nu} h_{a}^{\nu}-\partial_{\nu} \partial_{a} h^{\nu \rho}+\partial_{a} \partial^{\rho} h+\delta_{a}^{\rho}\left(\partial_{\nu} \partial_{\sigma} h^{\nu \sigma}-\square h\right)\right]+\gamma_{W}\left(\square h_{a}^{\rho}-\partial^{\rho} \partial_{\nu} h_{a}^{\nu}\right)=-16 \pi G_{\kappa} \mathrm{J}_{a}^{\rho}$,
Note that indices a and μ does not have any symmetries, so we can depose this equation into its symm. and anti-symm. parts

$$
\begin{aligned}
& \widetilde{G}_{\mu \nu} \equiv \frac{1}{2}\left[\square h_{\mu \nu}-2 \partial^{\sigma} \partial_{(\mu} h_{\nu) \sigma}+\partial_{\mu} \partial_{\nu} h+\eta_{\mu \nu}\left(\partial^{\rho} \partial^{\sigma} h_{\rho \sigma}-\square h\right)\right]+\frac{\gamma_{W}}{2}\left[\square h_{\mu \nu}-\partial^{\sigma} \partial_{(\mu} h_{\nu) \sigma}\right]=-8 \pi G_{\kappa} T_{(\mu \nu)}, \\
& \widetilde{G}_{[\mu \nu]} \equiv-\frac{\gamma_{W}}{2} \partial^{\sigma} \partial_{[\mu} h_{\nu] \sigma}=-8 \pi G_{\kappa} T_{[\mu \nu]},
\end{aligned}
$$

where

$$
\begin{aligned}
T_{(\mu \nu)} & \equiv\left(\eta_{\mu \rho} \eta_{\nu}^{a}+\eta_{\nu \rho} \eta_{\mu}^{a}\right) \mathrm{J}_{a}^{\rho} / 2 \\
T_{[\mu \nu]} & \equiv\left(\eta_{\mu \rho} \eta_{\nu}^{a}-\eta_{\nu \rho} \eta_{\mu}^{a}\right) \mathrm{J}_{a}^{\rho} / 2
\end{aligned}
$$

Free Field Equations and Physical GW Degrees
>Polarization Decomposition

- Spin-2 Tensor Modes $\hat{h}_{i j}$

$$
\hat{h}_{i t}=\hat{h}_{t t}=0, \hat{h}_{i}^{i}=0, \partial^{i} \hat{h}_{i j}=0,
$$

- Spin-1 Vector Modes S_{i} and F_{i}

$$
h_{t t}=0, h_{i t}=S_{i}, h_{i j}=2 \partial_{(i} F_{j)}, \partial^{i} S_{i}=\partial^{i} F_{i}=0
$$

- Spin-0 Scalar Modes ϕ, B, ψ and E

$$
h_{t t}=-2 \phi, h_{i t}=-\partial_{i} B, h_{i j}=-2 \psi \delta_{i j}+2 \partial_{i} \partial_{j} E .
$$

> Line Element:

$$
\begin{aligned}
& d s^{2}=(1+2 \phi) d t^{2}-2\left(S_{i}-\partial_{i} B\right) d x^{i} d t \\
& \quad-\left[\hat{h}_{i j}-(1-2 \psi) \eta_{i j}+2 \partial_{(i} F_{j)}+2 \partial_{i} \partial_{j} E\right] d x^{i} d x^{j}
\end{aligned}
$$

Free Field Equations and Physical GW Degrees

$>$ Scalar-Type Gauge Symmetry: $\delta h_{\mu \nu}=\partial_{\mu} \partial_{\nu} \zeta$

$$
\phi \rightarrow \phi+\partial_{t}^{2} \zeta / 2, \quad B \rightarrow B+\partial_{t} \zeta, \quad E \rightarrow E-\zeta / 2
$$

> Gauge-Invariant Variables

$$
\Phi=\phi-\partial_{t} B / 2 \quad A=B+2 \partial_{t} E .
$$

> Field Equations

Free Field Equations and Physical GW Degrees
> Scalar Sector:

$$
\square \Phi=0
$$

$$
\psi=-\gamma_{W} \Phi / 2, \quad \partial_{t} A=-\left(\gamma_{W}-2\right) \Phi
$$

$>$ Vector Sector:

$$
\square F_{i}=0, \quad S_{i}=\partial_{t} F_{i}
$$

> Tensor Sector

$$
\square \hat{h}_{i j}=0,
$$

Five GW Degrees:
 Two Tensor + Two Vector + One Scalar

Newtonian Limit

$>$ Newtonian Limit: static weak gravitational field + static dust matter
$>\mathrm{T}_{(00)}=\rho(\mathbf{x})$ is the only nonzero EM tensor component

$$
\begin{aligned}
& \widetilde{G}_{00}=\partial_{i} \partial^{i}(2 \psi+\beta \Phi)=-8 \pi G_{\kappa} \rho(\mathbf{x}), \\
& \widetilde{G}_{0 i}=-\partial_{k} \partial^{k}\left[\left(1+\gamma_{W}\right) S_{i}-\gamma_{W} \partial_{i} A / 2\right] / 2=0, \\
& \widetilde{G}_{i j}=-(1 / 2)\left\{\left(1+\gamma_{W}\right) \partial_{k} \partial^{k} \hat{h}_{i j}+\gamma_{W} \partial_{k} \partial_{k} \partial_{(i} F_{j)}\right. \\
& \left.-2 \partial_{i} \partial_{j}\left[\left(\gamma_{W}-1\right) \psi+\Phi\right]-2 \eta_{i j} \partial_{k} \partial^{k}\left[\left(1-\gamma_{W}\right) \psi-\Phi\right]\right\}=0 .
\end{aligned}
$$

$>$ Solution: Poisson Equation $\triangle \Phi \equiv-\partial_{k} \partial^{k} \Phi=4 \pi G_{N} \rho(\mathbf{x})$, + Constraint: $\quad \psi=\Phi /\left(1-\gamma_{W}\right)$,
> Newton Constant:

$$
G_{N} \equiv \frac{1-\gamma_{W}}{\left(1-\gamma_{W} / 2\right)\left(1+\gamma_{W}\right)} G_{\kappa}
$$

Newtonian Limit

> Probing Newtonian Limit with a Non-Relativistic Test Body
> At low-energies, all objects move along the geodesics

$$
\frac{d^{2} x^{\rho}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\rho} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=0
$$

$>$ The probing object moves very slowly, i.e., $d x^{i} / d \tau \ll d t / d \tau$,

$$
\frac{d^{2} x^{i}}{d t^{2}}=\partial^{i} \Phi(\mathbf{x})=-\partial_{i} \Phi(\mathbf{x})
$$ Acceleration!

The GQFT obeys the Weak Equivalence Principle

Newtonian Limit

> Detecting the Newtonian Limit with Photons, which would follow the light-like geodesics in the following metric Y--K. Gao, DH, et al.(2022)

$$
d s^{2}=(1+2 \Phi) d t^{2}-(1-2 \psi) \delta_{i j} d x^{i} d x^{j},
$$

> In the Solar system, these potentials can be written as

$$
\Phi=-G_{N} M_{\odot} / r, \quad \psi=\Phi /\left(1-\gamma_{W}\right),
$$

$>$ Following C.M. Will (2018), we can derive

- Deflection angle:

$$
\delta \theta \approx\left(2+\gamma_{W}\right)\left(G_{N} M_{\odot} / b\right)\left(1+\cos \theta_{0}\right)
$$

- Shapiro Time Delay: $\delta t_{\text {Shapiro }} \approx 2\left(2+\gamma_{W}\right) G_{N} M_{\odot} \ln \left(4 r_{e} r_{s} / b^{2}\right)$,
> Experimental Constraints:
- VLBI obs. of quasars: $\quad \gamma_{W}=(-0.8 \pm 1.2) \times 10^{-4}$

Conclusions

> Motivated by the difficulty of quantizing gravity, the GQFT has been proposed based on the gauge principle.
> We have studied linearized gravitational dynamics in the GQFT;
> We found five propagating GW dofs, with 2 tensors, 2 vectors and 1 scalar;
> We also studied the Newtonian limit of this theory, found the dynamics modified by a single parameter γ_{w}.
$>$ We can probe Newtonian theory with non-relativistic objects, which are found to obey the Weak Equivalence Principle;
> For photons, we have derived GQFT corrected formulas for the light deflection angle and Shapiro time delay. When compared with experimental data, γ_{w} has been well constrained.

Newtonian Limit

> Another test of GQFT is provided by the gravitational redshift of photons;
> Ratio of Photon frequencies at different locations

$$
\frac{\omega\left(\mathbf{x}_{2}\right)}{\omega\left(\mathbf{x}_{1}\right)}=\left(\frac{1+2 \Phi\left(\mathbf{x}_{1}\right)}{1+2 \Phi\left(\mathbf{x}_{2}\right)}\right)^{1 / 2} \approx 1+\Phi\left(\mathbf{x}_{1}\right)-\Phi\left(\mathbf{x}_{2}\right)
$$

> This formula is the same as in GR, so that gravitational redshift CANNOT be used to distinguish GQFT from GR.

