

Claudia Ratti

With: Ahmed Abuali, Szabolcs Borsanyi, Johannes Jahan, Micheal Kahangirwe, Paolo Parotto, Attila Pasztor, Hitansh Shah and Seth Trabulsi

Motivation

- Is there a critical point on the QCD phase diagram?
- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- What is the nature of matter in the core of neutron stars?

Equation of state in 4D

• QCD has three conserved charges: Baryon Number B, Strangeness S and Electric Charge Q (or Isospin I)

Heavy-ion collisions

- ➤ Global S=0
- ➤ Global Q=0.4B
- \triangleright Local fluctuations in the fluid cells with finite S and Q \neq 0.4B possible

Neutron Stars

- ➤ Global Q=0 for stability
- Strangeness is most likely not in equilibrium
- Finite isospin density

Cosmological trajectories

- \rightarrow Large lepton flavor asymmetries possible \rightarrow large asymmetries between quark flavors (lead to finite B, Q, S values)
- ➤ How would the critical point move in the 4D phase diagram?

Gao & Oldengott, PRL (2022) vitational waves similar to

First-order cosmological phase transition could lead to stable strange quark matter droplets + gravitational waves similar to those observed recently by NANOGrav

A. R. Bodmer, PRD (1971); E. Witten, PRD (1984); F. Di Clemente, C. R. et al, 2404.12094

Lattice QCD EoS in 4D from Taylor expansion

- Among the different ways to calculate the EoS of nuclear matter, lattice QCD is the most accurate way to get thermodynamics directly from first principles
- To reach finite density, one can expand using Taylor series to circumvent the fermion sign problem

J. Noronha-Hostler, C. R. et al., PRC (2019); A. Monnai et al., PRC (2019)

$$\frac{P(T,\hat{\mu}_B,\hat{\mu}_S,\hat{\mu}_Q)}{T^4} = \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{ijk}^{BSQ}(T) \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k \qquad \left(\text{with } \hat{\mu}_i = \frac{\mu_i}{T}\right) \qquad \text{where}$$

 $\chi_{ijk}^{BQS}(T) = \left. rac{\partial^{i+j+k}(P/T^4)}{\partial \hat{\mu}_B^i \hat{\mu}_S^j \hat{\mu}_Q^k}
ight|_{\hat{\mu}_B, \hat{\mu}_S, \hat{\mu}_Q = 0}$

- Problems with Taylor:
 - > Still limited to $\mu_i/T < 2.5$
 - ➤ Large errors on higher order terms
 - Wiggles on Taylor coefficients reflected on observables

S. Borsanyi, C. R. et al., PRL (2021)

Claudia Ratti 4/15

A novel expansion scheme at finite μ_B

Simulations at Im($\hat{\mu}_B$): T-dependence of normalised baryon density ($\chi_1^B = n_B/T^3$) at finite $\hat{\mu}_B$ appears to be shifted from the value at $\hat{\mu}_B = 0$.

For the
$$0/0$$
 limit, we have: $\frac{\chi_1^B(T,\hat{\mu}_B)\to 0}{\hat{\mu}_B\to 0}\to \frac{\partial \chi_1^B}{\partial \hat{\mu}_B}=\chi_2^B$

S. Borsanyi, C. R. et al., PRL (2021)

Main identity:
$$\boxed{\frac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0)}$$

with
$$T'(T,\hat{\mu}_B)=T\left(1+\kappa_2\,.\hat{\mu}_B^2+\kappa_4\,.\hat{\mu}_B^4+\dots\right)$$

captures the finite $\hat{\mu}_B$ dependence of the expansion

Claudia Ratti 5/15

T'-Expansion Scheme at finite μ_B

New TExS EoS based on coefficients $\kappa_{2/4}^{BB}(T)$ evaluated directly from lattice QCD simulations at $\mu_B = 0$

$$T'(T,\mu_B) = T\left(1 + \kappa_2^{BB}(T)\hat{\mu}_B^2 + \kappa_4^{BB}(T)\hat{\mu}_B^4 \dots\right)$$

with coefficients $\kappa_i^{BB}(T)$ connected to Taylor coefficients $\chi_i^B(T)$:

•
$$\kappa_2^{BB}(T,0) = \frac{1}{6T} \frac{\chi_4^B(T)}{\chi_2^{B}(T)}$$
 with $\chi'(T) = \frac{\partial \chi(T)}{\partial T}$

•
$$\kappa_4^{BB}(T,0) = \frac{1}{360T \times \chi_2'^B(T)^3} \left(3\chi_2'^B(T) \times \chi_6^B(T) - 5\chi_2''^B(T) \times \chi_4^B(T)^2 \right)$$

 \Rightarrow Clear separation of scales between $\kappa_2(T)$ and $\kappa_4(T)$

$$\Rightarrow \kappa_4(T)$$
 is almost $0 \rightarrow$ faster convergence

S. Borsanyi, C. R. et al., PRL (2021)

Smooth connection to $T \rightarrow \infty$ limit

To ensure that our main identity holds when $T \to \infty$, needs to normalise by Stefan-Boltzmann limits $\overline{\chi}_1^B(\hat{\mu}_B)$ and $\overline{\chi}_2^B(0)$:

$$\frac{\boldsymbol{\chi}_1^B(T,\hat{\boldsymbol{\mu}}_B)}{\overline{\boldsymbol{\chi}}_1^B(\hat{\boldsymbol{\mu}}_B)} = \frac{\boldsymbol{\chi}_2^B(T'(T,\hat{\boldsymbol{\mu}}_B),0)}{\overline{\boldsymbol{\chi}}_2^B(0)}$$

Smooth connection to $T \rightarrow \infty$ limit

To ensure that our main identity holds when $T \to \infty$, needs to normalise by Stefan-Boltzmann limits $\overline{\chi}_1^B(\hat{\mu}_B)$ and $\overline{\chi}_2^B(0)$:

$$\boxed{\frac{\boldsymbol{\chi}_1^B(T,\hat{\boldsymbol{\mu}}_B)}{\overline{\boldsymbol{\chi}}_1^B(\hat{\boldsymbol{\mu}}_B)} = \frac{\boldsymbol{\chi}_2^B(T'(T,\hat{\boldsymbol{\mu}}_B),0)}{\overline{\boldsymbol{\chi}}_2^B(0)}}$$

This leads to redefine:

$$T'(T,\mu_B) = T\left(1 + \lambda_2^{BB}(T)\hat{\mu}_B^2 + \dots\right)$$

with the new expansion coef. embedding the S.B. limit:

$$\lambda_2^{BB}(T) = \frac{1}{6T\chi_2'^B(T)} \times \left(\chi_4^B(T) - \frac{\overline{\chi}_4^B(0)}{\overline{\chi}_2^B(0)}\chi_2^B(T)\right)$$

S. Borsanyi, C. R. et al., PRD (2022)

Smooth connection to $T \rightarrow \infty$ limit

Claudia Ratti

To ensure that our main ide needs to normalise by Stefa

 $\overline{\chi}_1^B(\hat{\mu}_B)$ and $\overline{\chi}_2^B(\mathbf{k}_B)$

$$oxed{ rac{oldsymbol{\chi}_1^B(T,\hat{\mu}_B)}{\overline{oldsymbol{\chi}}_1^B(\hat{\mu}_B)} = rac{oldsymbol{\chi}_2^B(T'(T,\hat{\mu}_B))}{\overline{oldsymbol{\chi}}_2^B(0)} }$$

This leads to redefine:

$$T'(T,\mu_B) = T\left(1 + \lambda_2^{BB}(T)\hat{\mu}_B^2 + \ldots\right)$$

with the new expansion coef. embedding the S.B. limit:

$$\lambda_2^{BB}(T) = \frac{1}{6T\chi_2'^B(T)} \times \left(\chi_4^B(T) - \frac{\overline{\chi}_4^B(0)}{\overline{\chi}_2^B(0)}\chi_2^B(T)\right)$$

S. Borsanyi, C. R. et al., PRD (2022)

Construction of the new scheme - Basics

One can chose to project the $(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S)$ Cartesian coordinate system into a spherical one using $(\hat{\mu}, \theta, \varphi)$, following the relations:

$$\hat{\mu}_{B} = \hat{\mu} \cdot \cos(\theta) \qquad \qquad \hat{\mu} = \sqrt{\hat{\mu}_{B}^{2} + \hat{\mu}_{Q}^{2} + \hat{\mu}_{S}^{2}}$$

$$\hat{\mu}_{Q} = \hat{\mu} \cdot \sin(\theta) \cos(\phi) \iff \phi = \arccos\left(\frac{\hat{\mu}_{Q}}{\sqrt{\hat{\mu}_{Q}^{2} + \hat{\mu}_{S}^{2}}}\right)$$

$$\hat{\mu}_{S} = \hat{\mu} \cdot \sin(\theta) \sin(\phi) \qquad \qquad \theta = \arccos\left(\frac{\hat{\mu}_{B}}{\hat{\mu}}\right)$$

Simple way to **reduce** the problem **from 4D to 2D**: a single $\hat{\mu}$ projected along a given direction in the 3D $(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S)$ space.

 \rightarrow All previous equations from the 2D-TExS can be used as is!

Redefinition of the susceptibilities

We introduce then X_2 , a "generalised 2nd order susceptibility" at $\hat{\mu} = 0$:

$$\begin{split} X_{2}^{\theta,\phi}(T) &= \frac{\partial^{2}P/T^{4}}{\partial\hat{\mu}^{2}} \bigg|_{\hat{\mu}=0} \\ &= c_{\theta}^{2} \cdot \chi_{2}^{B}(T) + s_{\theta}^{2}c_{\phi}^{2} \cdot \chi_{2}^{Q}(T) + s_{\theta}^{2}s_{\phi}^{2} \cdot \chi_{2}^{S}(T) \\ &+ 2c_{\theta}s_{\theta}c_{\phi} \cdot \chi_{11}^{BQ}(T) + 2c_{\theta}s_{\theta}s_{\phi} \cdot \chi_{11}^{BS}(T) + 2s_{\theta}^{2}c_{\phi}s_{\phi} \cdot \chi_{11}^{QS}(T) \end{split}$$

as a combination of the usual susceptibilities $\chi_{11/2}^{BQS}(T)$ at $\hat{\mu}_B = \hat{\mu}_S = \hat{\mu}_Q = 0$ computed from HRG (at low T) + lattice QCD.

Examples:

-for
$$(\theta = 90^{\circ}, \phi = 90^{\circ})$$
, $\hat{\mu} = \hat{\mu}_S \leftrightarrow X_2 = \chi_2^S$
-for $(\theta = 135^{\circ}, \phi = 90^{\circ})$, $\hat{\mu} = \sqrt{\hat{\mu}_B^2 + \hat{\mu}_S^2} \leftrightarrow X_2 = \frac{\chi_2^B}{2} + \frac{\chi_2^S}{2} + \chi_{11}^{BS}$

The same way, one obtains:

$$X_4^{\Theta,\Phi}(T) = c_{\Theta}^4 \cdot \chi_4^B(T) + s_{\Theta}^4 c_{\Phi}^4 \cdot \chi_4^Q(T) + s_{\Theta}^4 s_{\Phi}^4 \cdot \chi_4^S(T) + \dots$$

New expansion scheme coefficients

From there, we can build the generalised 2^{nd} order expansion coefficient λ_2 :

$$\lambda_2^{\theta,\phi}(T) = \frac{1}{6T} \frac{1}{{X_2'}^{\theta,\phi}(T)} \times \left(X_4^{\theta,\phi}(T) - \frac{\overline{X}_4^{\theta,\phi}(0)}{\overline{X}_2^{\theta,\phi}(0)} X_2^{\theta,\phi}(T) \right)$$

embedding the S.B. limit correction $\left(\overline{\lambda}_2 = \lim_{T \to \infty} (\lambda_2) = 0\right)$, with $\overline{X}_{2/4}^{\theta,\phi}(0)$ being the S.B. limits for $X_{2/4}^{\theta,\phi}(T)$ at $\hat{\mu} = 0$. We employ

here the latest $\chi_{2/4}^{BQS}$ data from the WB collaboration.

Examples:

$$-for (\theta = 90^{\circ}, \phi = 90^{\circ}), \quad \hat{\mu} = \hat{\mu}_S$$
 $-for (\theta = 135^{\circ}, \phi = 90^{\circ}), \quad \hat{\mu} = \sqrt{\hat{\mu}_B^2 + \hat{\mu}_S^2}$

Claudia Ratti 10/15

Generalized charge density X₁

Using the previously obtained expansion coefficient $\lambda_2^{\theta,\phi}(T)$, one can build the shifted temperature expansion $T'^{\theta,\phi}(T,\hat{\mu})$:

$$T'^{\theta,\phi}(T,\hat{\mu}) = T\left(1 + \lambda_2^{\theta,\phi}(T)\hat{\mu}_B^2\right)$$

Then, using the TExS main identity, one can express the generalised charge density $X_1^{\theta,\phi}$ at finite $\hat{\mu}$:

$$X_1^{\theta,\phi}(T,\hat{\boldsymbol{\mu}}) = \frac{\overline{X}_1^{\theta,\phi}(\hat{\boldsymbol{\mu}})}{\overline{X}_2^{\theta,\phi}(0)} \times X_2^{\theta,\phi} \left(T'^{\theta,\phi}(T,\hat{\boldsymbol{\mu}}), 0 \right)$$

where we compute $X_2^{\theta,\phi}(T',0)$ using χ_2^{BQS} data from the Wuppertal-Budapest collaboration. a,b,c

Claudia Ratti 11

Pressure

We integrate $X_1^{\theta,\phi}(T,\hat{\mu})$ to compute the pressure:

$$egin{align} P^{oldsymbol{ heta},oldsymbol{\phi}}(T,\hat{oldsymbol{\mu}}) &= P(T,0) + \int_0^{\hat{oldsymbol{\mu}}} X_1^{oldsymbol{ heta},oldsymbol{\phi}}(T,\hat{oldsymbol{\mu}}') d\hat{oldsymbol{\mu}}' \ &= P(T,\hat{oldsymbol{\mu}}_B,\hat{oldsymbol{\mu}}_Q,\hat{oldsymbol{\mu}}_S) \end{split}$$

using lattice results for P(T,0) with recent precision improvement from the Wuppertal-Budapest collaboration.^a

Examples:

- for
$$(\theta = 90^{\circ}, \phi = 90^{\circ})$$
, $\hat{\mu} = \hat{\mu}_S$
- for $(\theta = 135^{\circ}, \phi = 90^{\circ})$, $\hat{\mu} = \sqrt{\hat{\mu}_B^2 + \hat{\mu}_S^2}$

Claudia Ratti 12/15

^aP. Parotto, talk at QM 2023

Entropy density

13/15

The expression for entropy density s is given as:

$$\begin{split} s^{\theta,\phi}(T,\hat{\mu}) &= \left. \frac{\partial P}{\partial T} \right|_{\mu} = \frac{\partial}{\partial T} \left[\int_{0}^{\mu'} X_{1}^{\theta,\phi}(T,\hat{\mu}) d\mu' \right]_{\mu} \\ &= s(T,0) + \int_{0}^{\mu'} \frac{\partial}{\partial T} \left[\frac{\overline{X}_{1}^{\theta,\phi}(\hat{\mu})}{\overline{X}_{2}^{\theta,\phi}(0)} \right]_{\mu} \times X_{2}^{\theta,\phi}(T',0) d\mu' \\ &+ \int_{0}^{\mu'} \frac{\overline{X}_{1}^{\theta,\phi}(\hat{\mu})}{\overline{X}_{2}^{\theta,\phi}(0)} \times \frac{\partial T'}{\partial T} \times \frac{\partial X_{2}^{\theta,\phi}(T',0)}{\partial T'} d\mu' \end{split}$$

Examples:

- for
$$(\theta = 90^{\circ}, \varphi = 90^{\circ})$$
, $\hat{\mu} = \hat{\mu}_S$
- for $(\theta = 135^{\circ}, \varphi = 90^{\circ})$, $\hat{\mu} = \sqrt{\hat{\mu}_B^2 + \hat{\mu}_S^2}$

Energy density

One can then compute energy density ε as:

$$\varepsilon^{\theta,\phi}(T,\hat{\mu}) = s.T - P + \sum_{i=B,Q,S} \mu_i \times n_i$$

$$= s.T - P + \mu_B \times n_B + \mu_Q \times n_Q + \mu_S \times n_S$$

$$= s.T - P + \mu \times (c_\theta \cdot \chi_1^B + s_\theta c_\phi \cdot \chi_1^Q + s_\theta s_\phi \cdot \chi_1^S)$$

$$= s.T - P + \mu \times X_1^{\theta,\phi}$$

Examples:

- for
$$(\theta = 90^{\circ}, \varphi = 90^{\circ})$$
, $\varepsilon(T, \mu_B, \mu_S) = s.T - P + \mu_S n_S$
- for $(\theta = 135^{\circ}, \varphi = 90^{\circ})$, $\varepsilon(T, \mu_B, \mu_S) = s.T - P + \frac{\mu_S}{\sqrt{2}} n_S - \frac{\mu_B}{\sqrt{2}} n_B$

Claudia Ratti 14/15

Conclusions

We present a new 4D lattice-based EoS construction using the T'-Expansion Scheme to extend the coverage from the 4D Taylor expansion ($\hat{\mu} \lesssim 2.5$) up to $\hat{\mu} \sim 3.5$.

4D-TEXS EoS

- We have generalized the T'-Expansion Scheme to 4D by computing $X_{2/4}^{\theta,\phi}(T,\mu)$ from lattice data at $\hat{\mu}=0$ (projecting a generalised $\mu=\sqrt{\mu_B^2+\mu_Q^2+\mu_S^2}$ onto spherical coordinates)
- We have shown extension from the (T, μ_B) plane to (T, μ_B, μ_S) and computed thermodynamics (pressure P, charge densities $n_{B/Q/S}$, entropy density s, energy density s)

Currently: we are working on extending to full 4D space (T, μ_B, μ_S, μ_Q)

Disclaimer: error shown in the preliminary results of this talk are underestimated \rightarrow need to complete the analysis of error consistently

Claudia Ratti 15/15