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ABSTRACT

The Khan-Penrose and Szekeres solution for colliding impulsive and sandwich plane gravitational
waves (GWs) were for equal strengths. We explored how to define the strength of GWs and used
that to construct the solution for arbitrary strengths. Penrose had pointed out that a Lorentz
transformation would yield different strengths and wondered if we had something more general. We
have checked that Lorentz transformation do yield different strengths and shown that we do, indeed
have a greater generalization then given by the Lorentz transformation.

I. INTRODUCTION

General Relativity (GR) is a nonlinear theory of grav-
itation that fundamentally alters our understanding of
gravity. Investigating the linear consequences of GR is
crucial for fully grasping its implications. The lineariza-
tion of Einstein’s field equations (EFEs) naturally leads
to the prediction of GWs [1]. Unlike Newtonian grav-
ity, where gravity is treated as a static force, GR de-
scribes gravity as a dynamic field capable of propagat-
ing through spacetime as GWs. By definition, GWs are
non-static (time-varying) vacuum solutions of the EFEs
[2]. For these solutions, the stress-energy tensor is zero,
which initially led to debates regarding the existence of
GWs [3]. However, this issue was addressed by Weber
and Wheeler [4], and later by Bondi and Robinson [5]
for cylindrical and plane GWs respectively. The matter
was fully resolved after the direct detection of GWs on
September 14, 2015 [6].

So far, three types of exact GW solutions have been
obtained: exact solution for plane GW [7], cylindrical
GWs [8], and those resulting from the collision of plane
GWs [9–11]. The main motivation behind this work is to
assess the strength of colliding plane GWs. In a previous
publication [12], we discussed the collision of GWs with
unequal strengths, where the strength depends on the
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size of the sandwich. Penrose pointed out [13] that un-
equal strengths would be obtained by applying a Lorentz
transformation to the wave amplitudes.

In this study, we adopt an alternative approach to
defining the strength of GWs. Originally introduced
by Einstein [14], this method involves using the“pseudo-
tensor,”which is treated as a source term in vacuum so-
lutions. This approach was developed to describe the
conservation of energy and momentum in the context of
GR, recognizing that gravitational energy cannot be lo-
calized in the same way as other forms of energy due to
the equivalence principle. For that purpose, we perturb
the metric for a single wave by hµν . In the context of
linearized gravity, second and higher-order terms of hµν
are typically neglected. However, for the pseudo-tensor
we retain these terms and shift them to the other side
of the field equations, where they appear as τµν . They
represent the effective stress-energy tensor of the gravi-
tational field [15]. Solving the linearized portion of the
wave equation by an ansatz, we determine constants re-
lated to the amplitude and frequency of the waves.

The paper is organized as follows. In the subsequent
section, we provide a brief overview of colliding plane
GWs of equal and unequal strengths. In section III, we
discuss the strength od the GWs with some examples
from the literature. In section IV, we present a detailed
analysis and our findings in light of Penrose’s suggestion,
including the results we obtained by solving the homo-
geneous part of the sandwich GWs in all three curved
regions. We conclude our discussion in section V.
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II. A REVIEW OF COLLIDING PLANE
GRAVITATIONAL WAVES

The Szekeres line element for colliding sandwich GWs
is given by [9],

ds2 =T 2e−M(u,v)dudv

− e−U(u,v)
[
eV (u,v)dx2 + e−V (u,v)dy2

]
,

(1)

where u and v are advanced and retarded times defined
as u = t−z

T and v = t+z
T . The spacetime is conveniently

divided into six regions, as depicted in Fig. 1. The solu-
tion for each of these regions is as follows:
Region I (u < 0, v < 0): Here, M = U = V = 0.
Region II (0 < u ≤ u0 < 1, v < 0):

U = − ln(1− u4) , V =
√

6 tanh−1 u2,

M = −1

4
ln(1− u4) .

(2)

Region III (0 < u, 0 < v ≤ v0 ≤ 1): The expressions
for M , U , and V from Region II apply here, but with u
replaced by v.
Regions IV (u > u0 < 1, v < 0) and V (0 < u, v > v0 < 1)
are flat.
Region VI

(
u0 < u, v0 < v < 1, u4 + v4 < 1

)
is given by

U = − ln
(
1− u4 − v4

)
,

V =
√

6
[
tanh−1 u2

(
1− v4

)−1/2
+ tanh−1 v2

(
1− u4

)−1/2
]
,

M = ln
[(

1− u4
) (

1− u4
)]−3/4 − ln

(
1− u4 − v4

)
+ 3 tanh−1 u2v2

[(
1− u4

) (
1− v4

)]−1/2
.

(3)
The metric (3) corresponds to the collision region.

As before, T represents the “doomsday” or the “end of
time.” The question then is: How can we identify T for
an actual GW as opposed to just a theoretical solution?
What does it represent physically? Since T is related to
inverse frequency, it should serve as an inverse measure
of the “strength” of the GWs!

A. Colliding Plane Gravitational Waves of
Unequal Strengths

What occurs when colliding GWs have different
strengths? To answer this, we must determine how their
strengths are reflected in the metrics. Notably, the mo-
mentum imparted to test particles will no longer cancel
out at the moment of collision. This requires us to iden-
tify the parameters that define the strength of the waves
based on this observation.

We applied the Weber-Wheeler [4] method and the
eψN formalism [16–19] to address this issue. It was found
that the strength of these waves varies as T−4 [4]. To ac-
count for differing strengths, we used different “dooms-
days” for the two waves, denoted by T2 and T3. The

FIG. 1. The colliding sandwich GW spacetime of equal
strength.

resulting vacuum solution metric is then given by:

ds2 =T2T3e
−M(u,v)dudv

− e−U(u,v)
[
eV (u,v)dx2 + e−V (u,v)dy2

]
,

(4)

with u, v, U , and V defined for each region, and specifi-
cally u2, v2, U2, and V2 for Region II, and u3, v3, U3, and
V3 for Region III, as illustrated in Fig. 2, the solutions
for these regions are given by:

U2,3 = − ln(1− (
t∓ z
T2,3

)4), V2,3 =
√

6 tanh−1(
t∓ z
T2,3

)2,

M2,3 = −1

4
ln(1− (

t∓ z
T2,3

)4);

(5)
and the singularity is at

[(t− z)/T2]
4

+ [(t+ z)/T3]
4

= u2
4 + v3

4 = 1. (6)

Fig. 2, shows the spacetime configuration for T3/T2 =
0.8. Since a larger T indicates a weaker GW, and given
that T2 > T3, the wave with T2 is stronger. In Region
VI, both u2 and v3 are employed.

B. Colliding Impulsive Gravitational Waves

Khan and Penrose (KP) provided a solution for col-
liding impulsive GW using the Penrose cut-and-paste
method [11]. Intuitively, a sandwich GW can be seen
as a generalization of the impulsive GW, where the pulse
duration is extended to a finite period of time [20, 21].

By taking the limit as the “thicknesses of the sand-
wiches,” u0 and v0, approach zero, while increasing the
”intensity” such that the doomsday remains unchanged
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FIG. 2. The colliding sandwich gravitational wave (GW)
spacetime has unequal strengths. For illustrative purposes,
the ratio of the sandwich wave strengths is taken to be
T3/T2 = 0.8.

in each case, we obtain the KP GW:

ds2 = T2T3B (u2, v3)
3/2

{
A (u2, v3) du2dv3

−
[
B+ (u2, v3) dx2 +B− (u2, v3) dy2

]}
,

(7)

A = 1/

[√
1− u22 − v23

(
u2v3 +

√
1− u22 − v23

)2
]
,

B = 1− u22 − v23 ,

B± =

{√
1− u22 ± v3√
1− u22 ∓ v3

}{√
1− v23 ± u2√
1− v23 ∓ u2

}
.

(8)

Again, spacetime is depicted for T3/T2 = 0.8. Again,
the left wave is stronger. In region VI, both u2 and v3
are used. There are now only four regions.

III. THE STRENGTH OF GRAVITATIONAL
WAVES

The existing literature on exact solutions for GWs of-
ten employs dimensionless variables, which makes it dif-
ficult to determine the physical strength of these waves
in concrete terms. In GR, energy is not as straightfor-
wardly defined as in classical mechanics, so the energy
content of GW is not directly specified. For a classical
analogy, consider a simple pendulum: its energy is clearly
related to the amplitude of oscillation, the frequency (f),
or the period (T ), which in turn depend on parameters
like mass (m), string length (l), and gravitational acceler-
ation (g). Weber and Wheeler calculated the momentum

FIG. 3. The colliding impulsive GWs of unequal strengths.

transferred to test particles by analyzing the accelera-
tion of these particles as they moved along geodesics in
the presence of cylindrical GWs [4]. Later, Ehlers and
Kundt applied a similar approach to study plane-fronted
GW [5].

The strength of GW is described by their strain, which
quantifies the relative change in distance induced by the
wave as it travels through space. This is generally ex-
tremely small, often around 10−21 or even less, due to the
minimal interaction of GW with matter. The amplitude
is influenced by factors such as the masses of the inter-
acting objects, their separation, and the energy released
in the event. For example, the collision of two black holes
(BHs) produces GWs with a strain detectable by highly
sensitive instruments like LIGO and Virgo, even across
vast cosmic distances. Studying these waves’ strength
provides essential insights into the sources and mecha-
nisms of these cosmic events and helps test the bound-
aries of our understanding of GR and the nature of space-
time.

IV. INTERPRETATION OF STRENGTH OF
COLLIDING PLANE GRAVITATIONAL WAVES

Penrose’s observation regarding the Lorentz transfor-
mation in the direction of motion suggests that the result-
ing “strength” corresponds to a frequency. For a frame
moving at a speed

v =

√
1−

(
T3
T2

)2

, (9)

relative to the second frame, the two waves would appear
to have a constant time given by

T =

√
T2
T3
. (10)
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We have confirmed this observation. However, this
“strength” does not account for the amplitude of the
wave. How can this amplitude be determined for GWs?

We solved the homogeneous equation for a single sand-
wich GW using an ingenious method, yielding the solu-
tion

hµν = C
u2(1 + u4)

(1− u4)2
ηµν , (11)

which can be applied to Region II by substituting u by u2,
and to Region III by substituting v3, with corresponding
constants C2 and C3.

For Region VI, we can use a linear combination as the
solution to the homogeneous part of the equation, im-
posing the boundary condition that for equal strengths,
they cancel at the point and time of collision. Thus, one
constant can be taken as the negative of the other in that
scenario. In general, we can express them as C2 and −C3.

To account for the “effective energy” resulting from
the curvature of spacetime, τµν was defined for linearized
gravity, with all the nonlinear terms transposed to the
right-hand side as a “source.” For GWs this approach
leads to a non-homogeneous wave equation with τµν , as
the source:

�hµν = κτµν = f(u, v)ηµν , (12)

where ηµν is the Minkowski metric tensor. For the inter-
action Region VI, the function f(u, v) is given by

f (u2, v3) =
u22v

2
3

(
1 + u42

)2 (
1 + v43

)2
(1− u42) (1− v43) (1− u42 − v43)

. (13)

Thus, the complete solution is:

hµν =

{
C2
u22(1 + u42)

(1− u42)2
− C3

v23
(
1 + v43

)
(1− v43)

2

+ κ�−1f(u2, v3)

}
ηµν .

(14)

Our method does not directly address the last term,
but we can obtain an approximate or numerical solution

for any given (u2, v3). For any values of C2 and −C3, we
can find a (u2, v3) such that hµν = 0, where no momen-
tum will be imparted to test particles.

V. CONCLUSION

By using classical wave theory as a guide, we re-
examined the physics of GWs in semi-classical terms to
understand what Wheeler referred to as ”points of prin-
ciple” for the exact solution of colliding plane GW.

We solved the linearized wave equation for a sin-
gle sandwich GW, and then for the colliding waves in
the region of intersection. When the waves have equal
“strengths,” a test particle—akin to a mosquito caught
between clapping hands—remains stationary.

As explained in more detail elsewhere [22], there are
four constants: two inverse “frequencies,” T2 and T3,
and two “amplitudes,” C2 and C3, which define the
”strengths” of the two waves. The amplitudes represent
differences, such as those between GW from binary pul-
sars and those from supernova explosions. With different
frequencies but identical amplitudes, the test particle will
always be displaced. By varying both the frequencies and
amplitudes, the particle may be stationary.

Thus, the framework we envisioned is indeed more gen-
eral. By taking appropriate limits, we derived the solu-
tion for KP waves of unequal strength for impulsive plane
waves. When the strengths are equal, we recovered the
KP solution, providing us with the first derivation of the
KP solution.

We still need to find the particular solution of the or-
dinary differential equation (ODE) and take the limit as
the width of the sandwich approaches zero to explicitly
understand the behavior of KP waves.
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