Conveners
Tuesday morning session
- Jorge Armando Rueda Hernandez (ICRANet)
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has been in operation since early 2020. Largely motivated by the great Arecibo observatory, FAST now perches on the apex of sensitivity among centimeter-band radio instruments and will stay there until the advent of SKA. In a little three years, FAST data has facilitated more than 150 journal papers, including at least 7 on...
In the local universe have been observed enhancements of star formation due to relativistic jets from accreting black holes (BHs). These BH “positive feedbacks” take place by the interaction of BH-jets with high-density molecular clouds, which leads to compression of the gas and subsequent enhancement of star formation. This BH-jet triggering mechanism of star formation must have been more...
MAGIC is a ground-based Imaging Atmospheric Cherenkov Telescope (IACT) for very high energy gamma-ray measurements that has pioneered high-sensitivity measurements down to a few tens of GeV. It includes a system of double telescopes with a diameter of 17 m, separated by a distance of 85 m, operating in coincidence mode (stereo). The telescopes are located at an altitude of 2200 m above sea...
The Extreme Universe is the most powerful and fastest explosions in the Universe associated with the formation and transformation of relativistic stars.
For localization of gravitational-wave, neutrino and gamma-ray events, first of all, optical instruments of the 21st century are needed, which have outstanding technical characteristics: fast response, full robotization and high angular...
The advent of the Cerenkov Telescope Array (CTA) will increase dramatically the number of detected very-high energy transients and will improve the accuracy of their variability timescale sampling. A number of facilities at lower energies are being designed and developed to guarantee accurate follow-up, identification, and monitoring of the counterparts to the TeV emitters. Within this...
In the course of the last decade, the IceCube Neutrino Observatory has marked the first milestones of neutrino astronomy, starting with the discovery and characterisation of the astrophysical neutrino flux. Astrophysical neutrinos are unique tracers of hadronic particle acceleration and could be the key to unveil the origin of high-energy cosmic rays. IceCube has been hunting for the sources...
The progress in the construction and operation of the Baikal Gigaton Volume Detector in Lake Baikal is reported. The detector is designed for search for high energy neutrinos whose sources are not yet reliably identified. It currently includes over 3500 optical modules arranged on 98 strings, providing an effective volume of 0.6 km3 for cascades with energy above 1 PeV. We review the...