7–12 Jul 2024
Aurum, the ‘Gabriele d’Annunzio’ University and ICRANet
Europe/Rome timezone

Micro-Hertz Gravitational Waves (0.1-100 Hz): Overview of Sources and Detection Methods

9 Jul 2024, 15:00
25m
M4 (Palazzo Micara of the ‘Gabriele d’Annunzio’ University)

M4

Palazzo Micara of the ‘Gabriele d’Annunzio’ University

Viale Pindaro, 42, Pescara
Talk in a parallel session Micro-Hertz gravitational waves (0.1-100 μHz): sources and detection methods Micro-Hertz gravitational waves (0.1-100 μHz): sources and detection methods

Speaker

Wei-Tou Ni (State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China)

Description

Micro-Hertz Gravitational Waves (0.1-100 Hz): Overview of Sources and Detection Methods

Wei-Tou Ni and Gang Wang

The micro-Hz GW (Gravitational Wave) band, ranging from 0.1 to 100 Hz, occupies a crucial intermediate gap between the PTA (Pulsar Timing Array) GW detection band (0.03—100 nHz) and the sensitive bands of space missions like LISA/Taiji/TianQin (0.1 mHz—1 Hz). This frequency range is abundant with potential GW sources. The primary scientific objectives within this band include the detection of GWs from supermassive BH (Black Hole) binary inspiral and coalescence events spanning masses of 10^5-10^10 solar masses, as well as GWs emitted during the inspiral phase of intermediate-mass BH coalescence and intermediate BH binaries falling into supermassive BHs. Detection of micro-Hz GWs will provide opportunities to study the BH co-evolution with the galaxies, to test general relativity and beyond-the Standard-Model theories, to explore the micro-Hz stochastic GW background and so on. Great advances in both scientific goals and detection methods have accumulated since MG16. We here give an overview for this parallel session.

Primary author

Wei-Tou Ni (State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China)

Co-author

Gang Wang (Shanghai Astronomical Observatory, CAS)

Presentation materials

There are no materials yet.