Conveners
Cosmic backgrounds from radio to far-IR: Monday block 1
- Tiziana Trombetti (INAF)
- Carlo Burigana (INAF-Istituto di Radioastronomia)
Cosmic backgrounds from radio to far-IR: Monday block 2
- Tiziana Trombetti (INAF)
- Carlo Burigana (INAF-Istituto di Radioastronomia)
Description
This parallel session will focus on the interpretation and perspectives for cosmology and astrophysics coming from cosmic backgrounds from radio to far-IR, both in temperature and in polarization. Following past CMB projects and the latest results from the Planck mission, sub-orbital experiments are improving our understanding of small scale anisotropies and searching for primordial gravitational waves, while future CMB missions of different scales are in preparation or under study. The sub-mm / far-IR domain, crucial for high-frequency foreground mitigation, allows to study a number of astrophysical cosmology topics, including the early stages of star and galaxy formation. In parallel, on-going and future radio projects promise to shed light on the dawn age and on the reionization epoch and to provide 3D images of the Universe's evolution. The authors of both invited and contributed talks are encouraged to underline the connection between astrophysical and cosmological results.
We review the contribution of undetected extragalactic sources to the cosmic microwave background (CMB) radiation, from radio to sub-millimetre wavelengths. As demostrated by very recent analyses, Active Galactic Nuclei (AGN) is the dominant population in this frequency
range, at least down to the $\simeq$ mJy flux density level in source number counts. As for this, number counts of...
About a billion years after the Big Bang, the Epoch of Reionisation saw the first light sources in the Universe slowly ionise the primordial atoms of the surrounding IGM. Learning about this distant epoch has the potential of unveiling crucial information about the formation of the first stars, galaxies, and early black holes, which sourced it.
One particularly promising probe of this epoch...
Two lessons learned from Planck was the importance of global analysis of instrumental, astrophysical and cosmological parameters as well as the usefulness of joint analysis of multiple datasets for component separation purposes. These lessons has been further developed into a coherent pipeline for global analysis of multiple datasets by BeyondPlanck and Cosmoglobe, which has been successfully...
The cosmic infrared background (CIB) is sourced by the dusty star-forming galaxies throughout the Universe and spans a wide range of redshifts. Its measurements are thus a powerful tool to map the star formation at high redshifts and understand the connection between the host dark matter halos with the galaxies residing in them. Also, in synergy with the cosmic microwave background (CMB), the...
The peculiar motion of an observer relative to an ideal reference frame at rest with respect to the cosmic background produces boosting effects which modify and transfer at higher multipoles the frequency spectrum of the isotropic background. To mitigate the computational effort needed for accurate theoretical predictions, I present analytical solutions of a linear system able to evaluate the...
Thanks to its all-sky coverage, the Planck mission had the unique capability of detecting the brightest strongly lensed high-z galaxies in the sky. The combination of boosted luminosity and stretching of images offers a unique opportunity to pierce into their internal structure and dynamics via high-resolution follow-up observations. It becomes possible to reach spatial resolutions of tens of...